BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25416393)

  • 1. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How is methane formed and oxidized reversibly when catalyzed by Ni-containing methyl-coenzyme M reductase?
    Chen SL; Blomberg MR; Siegbahn PE
    Chemistry; 2012 May; 18(20):6309-15. PubMed ID: 22488738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models.
    Miyazaki Y; Oohora K; Hayashi T
    Chem Soc Rev; 2022 Mar; 51(5):1629-1639. PubMed ID: 35148362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations.
    Duin EC; McKee ML
    J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane.
    Scheller S; Goenrich M; Thauer RK; Jaun B
    J Am Chem Soc; 2013 Oct; 135(40):14975-84. PubMed ID: 24004388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase.
    Kunz RC; Horng YC; Ragsdale SW
    J Biol Chem; 2006 Nov; 281(45):34663-76. PubMed ID: 16966321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order.
    Wongnate T; Ragsdale SW
    J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of Methyl Coenzyme M Reductase in the Methanogenic Archaeon Methanococcus maripaludis.
    Lyu Z; Chou CW; Shi H; Wang L; Ghebreab R; Phillips D; Yan Y; Duin EC; Whitman WB
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29339414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
    Scheller S; Goenrich M; Boecher R; Thauer RK; Jaun B
    Nature; 2010 Jun; 465(7298):606-8. PubMed ID: 20520712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically.
    Krüger M; Meyerdierks A; Glöckner FO; Amann R; Widdel F; Kube M; Reinhardt R; Kahnt J; Böcher R; Thauer RK; Shima S
    Nature; 2003 Dec; 426(6968):878-81. PubMed ID: 14685246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigation of the nickel-containing porphinoid cofactor F(430). Comparison of the free cofactor in the (+)1, (+)2 and (+)3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms.
    Duin EC; Signor L; Piskorski R; Mahlert F; Clay MD; Goenrich M; Thauer RK; Jaun B; Johnson MK
    J Biol Inorg Chem; 2004 Jul; 9(5):563-76. PubMed ID: 15160314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation.
    Pelmenschikov V; Siegbahn PE
    J Biol Inorg Chem; 2003 Jul; 8(6):653-62. PubMed ID: 12728361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for organometallic intermediates in bacterial methane formation involving the nickel coenzyme F₄₃₀.
    Dey M; Li X; Zhou Y; Ragsdale SW
    Met Ions Life Sci; 2010; 7():71-110. PubMed ID: 20877805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances of structure, function, and catalytic mechanism of methyl-coenzyme M reductase].
    Lai Z; Huang G; Bai L
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4147-4157. PubMed ID: 34984864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the methyl-coenzyme-m reductase protein matrix on the hole-size and nonplanar deformations of coenzyme F430.
    Mbofana C; Zimmer M
    Inorg Chem; 2006 Mar; 45(6):2598-602. PubMed ID: 16529481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the thioether product formed from the thiolytic cleavage of the alkyl-nickel bond in methyl-coenzyme M reductase.
    Kunz RC; Dey M; Ragsdale SW
    Biochemistry; 2008 Feb; 47(8):2661-7. PubMed ID: 18220418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.