These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2541683)

  • 1. Proteolysis of N-ethylmaleimide-modified aldolase loaded into erythrocyte ghosts: prevention by inhibitors of calpain.
    Hopgood MF; Knowles SE; Ballard FJ
    Biochem J; 1989 Apr; 259(1):237-42. PubMed ID: 2541683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of native and modified forms of fructose-bisphosphate aldolase microinjected into HeLa cells.
    Hopgood MF; Knowles SE; Bond JS; Ballard FJ
    Biochem J; 1988 Nov; 256(1):81-8. PubMed ID: 3223914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inhibitors on aldolase breakdown after its microinjection into HeLa cells.
    Knowles SE; Hopgood MF; Ballard FJ
    Biochem J; 1989 Apr; 259(1):27-33. PubMed ID: 2655577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.
    Croall DE; Morrow JS; DeMartino GN
    Biochim Biophys Acta; 1986 Jul; 882(3):287-96. PubMed ID: 3015225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phorbol 12-myristate 13-acetate-stimulated phosphorylation of erythrocyte membrane skeletal proteins is blocked by calpain inhibitors: possible role of protein kinase M.
    Al Z; Cohen CM
    Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):675-83. PubMed ID: 8280066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of rat erythrocytes by membrane-mobility agent A2C depends on membrane proteolysis by a cytoplasmic calpain.
    Glaser T; Kosower NS
    Eur J Biochem; 1986 Sep; 159(2):387-92. PubMed ID: 3019690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polyphosphoinositide phosphodiesterase of erythrocyte membranes.
    Downes CP; Michell RH
    Biochem J; 1981 Jul; 198(1):133-40. PubMed ID: 6275838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced proteolysis and changes in membrane-associated calpain following phenylhydrazine insult to human red cells.
    Mortensen AM; Novak RF
    Toxicol Appl Pharmacol; 1991 Sep; 110(3):435-49. PubMed ID: 1949012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition by calcium ions of adenosine cyclic monophosphate formation in sealed pigeon erythrocyte 'ghosts'. A study using the photoprotein obelin.
    Campbell AK; Dormer RL
    Biochem J; 1978 Oct; 176(1):53-66. PubMed ID: 215135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell-mediated microinjection: methodological considerations.
    Netland PA; Dice JF
    Anal Biochem; 1985 Oct; 150(1):214-20. PubMed ID: 4083480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of aldolase binding to erythrocyte membrane: Part II. Kinetic aspects.
    Kelkar SM; Kaklij GS
    Biochem Int; 1983 Jan; 6(1):53-61. PubMed ID: 6679317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the proteolysis of rat erythrocyte membrane proteins by a synthetic inhibitor of calpain.
    Mehdi S; Angelastro MR; Wiseman JS; Bey P
    Biochem Biophys Res Commun; 1988 Dec; 157(3):1117-23. PubMed ID: 2849930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual role for the Ca2+-requiring proteinase in the degradation of hemoglobin by erythrocyte membrane proteinases.
    Pontremoli S; Melloni E; Sparatore B; Michetti M; Horecker BL
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6714-7. PubMed ID: 6093116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calpain (Ca(2+)-dependent thiol protease) in erythrocytes of young and old individuals.
    Glaser T; Schwarz-Benmeir N; Barnoy S; Barak S; Eshhar Z; Kosower NS
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):7879-83. PubMed ID: 8058728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary study on the effect of caspase-6 and calpain inhibitors on postmortem proteolysis of myofibrillar proteins in chicken breast muscle.
    Huang M; Huang F; Ma H; Xu X; Zhou G
    Meat Sci; 2012 Mar; 90(3):536-42. PubMed ID: 22098823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. II. Formation of membrane leaks in ghost membranes after limited proteolysis of skeletal proteins by trypsin.
    Klonk S; Deuticke B
    Biochim Biophys Acta; 1992 Apr; 1106(1):137-42. PubMed ID: 1581326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the growth of WI-38 fibroblasts by benzyloxycarbonyl-Leu-Leu-Tyr diazomethyl ketone: evidence that cleavage of p53 by a calpain-like protease is necessary for G1 to S-phase transition.
    Zhang W; Lu Q; Xie ZJ; Mellgren RL
    Oncogene; 1997 Jan; 14(3):255-63. PubMed ID: 9018111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of aldolase binding to erythrocyte membrane: Part I. Effect of membrane phosphorylation on aldolase association.
    Kaklij GS; Kelkar SM
    Biochem Int; 1983 Jan; 6(1):43-52. PubMed ID: 6089803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of phosphofructokinase and aldolase with the membrane of the intact erythrocyte.
    Jenkins JD; Madden DP; Steck TL
    J Biol Chem; 1984 Aug; 259(15):9374-8. PubMed ID: 6235228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial events in the degradation of soluble cellular enzymes: factors affecting the stability and proteolytic susceptibility of fructose-1,6-bisphosphate aldolase.
    Bond JS; Offermann MK
    Acta Biol Med Ger; 1981; 40(10-11):1365-74. PubMed ID: 7044001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.