These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 25416870)
21. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model. Hamaya S; Maeda H; Funaki M; Fukui H J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903 [TBL] [Abstract][Full Text] [Related]
22. Relativistic effects on the nuclear magnetic resonance shielding of FX (X = F, Cl, Br, I, and At) molecular systems. Gómez SS; Aucar GA J Chem Phys; 2011 May; 134(20):204314. PubMed ID: 21639447 [TBL] [Abstract][Full Text] [Related]
23. Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor. Xiao Y; Liu W J Chem Phys; 2013 Apr; 138(13):134104. PubMed ID: 23574205 [TBL] [Abstract][Full Text] [Related]
24. Relativistic and electron-correlation effects on magnetizabilities investigated by the Douglas-Kroll-Hess method and the second-order Møller-Plesset perturbation theory. Yoshizawa T; Hada M J Comput Chem; 2009 Nov; 30(15):2550-66. PubMed ID: 19373837 [TBL] [Abstract][Full Text] [Related]
25. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides. Lantto P; Vaara J J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253 [TBL] [Abstract][Full Text] [Related]
26. NMR shielding constants of CuX, AgX, and AuX (X = F, Cl, Br, and I) investigated by density functional theory based on the Douglas-Kroll-Hess Hamiltonian. Yoshizawa T; Sakaki S J Comput Chem; 2013 May; 34(12):1013-23. PubMed ID: 23335254 [TBL] [Abstract][Full Text] [Related]
27. One-electron contributions to the g-tensor for second-order Douglas-Kroll-Hess theory. Sandhoefer B; Neese F J Chem Phys; 2012 Sep; 137(9):094102. PubMed ID: 22957550 [TBL] [Abstract][Full Text] [Related]
28. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator. Maeda H; Ootani Y; Fukui H J Chem Phys; 2007 May; 126(17):174102. PubMed ID: 17492852 [TBL] [Abstract][Full Text] [Related]
29. Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4-n Y n (n = 0-4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds. Maldonado AF; Aucar GA; Melo JI J Mol Model; 2014 Sep; 20(9):2417. PubMed ID: 25201450 [TBL] [Abstract][Full Text] [Related]
30. Relativistic dynamics of half-spin particles in a homogeneous magnetic field: an atom with nucleus of spin 12. Misra A; Datta SN J Chem Phys; 2005 Aug; 123(6):64101. PubMed ID: 16122294 [TBL] [Abstract][Full Text] [Related]
31. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component. Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262 [TBL] [Abstract][Full Text] [Related]
32. Two-component relativistic hybrid density functional computations of nuclear spin-spin coupling tensors using Slater-type basis sets and density-fitting techniques. Autschbach J J Chem Phys; 2008 Sep; 129(9):094105. PubMed ID: 19044863 [TBL] [Abstract][Full Text] [Related]
33. Electric field gradients in Hg compounds: molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods. Arcisauskaite V; Knecht S; Sauer SP; Hemmingsen L Phys Chem Chem Phys; 2012 Dec; 14(46):16070-9. PubMed ID: 23111689 [TBL] [Abstract][Full Text] [Related]
34. Decoupling of the Dirac equation correct to the third order for the magnetic perturbation. Ootani Y; Maeda H; Fukui H J Chem Phys; 2007 Aug; 127(8):084117. PubMed ID: 17764239 [TBL] [Abstract][Full Text] [Related]
35. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals. Xiao Y; Zhang Y; Liu W J Chem Phys; 2014 Oct; 141(16):164110. PubMed ID: 25362275 [TBL] [Abstract][Full Text] [Related]
36. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation. Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871 [TBL] [Abstract][Full Text] [Related]
37. Theoretical prediction of noble-gas compounds: Ng-Pd-Ng and Ng-Pt-Ng. Taketsugu Y; Taketsugu T; Noro T J Chem Phys; 2006 Oct; 125(15):154308. PubMed ID: 17059256 [TBL] [Abstract][Full Text] [Related]
38. Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids. Romaniello P; de Boeij PL J Chem Phys; 2007 Nov; 127(17):174111. PubMed ID: 17994811 [TBL] [Abstract][Full Text] [Related]
39. Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon. Lantto P; Standara S; Riedel S; Vaara J; Straka M Phys Chem Chem Phys; 2012 Aug; 14(31):10944-52. PubMed ID: 22782133 [TBL] [Abstract][Full Text] [Related]
40. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods. Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]