These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25416899)

  • 1. Chemical segregation in metallic glass nanowires.
    Zhang Q; Li QK; Li M
    J Chem Phys; 2014 Nov; 141(19):194701. PubMed ID: 25416899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key factors affecting mechanical behavior of metallic glass nanowires.
    Zhang Q; Li QK; Li M
    Sci Rep; 2017 Jan; 7():41365. PubMed ID: 28134292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation.
    Cui YY; Wang TL; Li JH; Dai Y; Liu BX
    Phys Chem Chem Phys; 2011 Mar; 13(9):4103-8. PubMed ID: 21229150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of zirconium metallic glass.
    Zhang J; Zhao Y
    Nature; 2004 Jul; 430(6997):332-5. PubMed ID: 15254533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermomechanical Behavior of Molded Metallic Glass Nanowires.
    Magagnosc DJ; Chen W; Kumar G; Schroers J; Gianola DS
    Sci Rep; 2016 Jan; 6():19530. PubMed ID: 26787400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires.
    Koh SJ; Lee HP
    Nanotechnology; 2006 Jul; 17(14):3451-67. PubMed ID: 19661590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach.
    Salmon PS; Zeidler A
    Phys Chem Chem Phys; 2013 Oct; 15(37):15286-308. PubMed ID: 23938952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes.
    Zannier V; Grillo V; Martelli F; Plaisier JR; Lausi A; Rubini S
    Nanoscale; 2014 Jul; 6(14):8392-9. PubMed ID: 24942288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase.
    Elenius M; Oppelstrup T; Dzugutov M
    J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature heat capacity of a severely deformed metallic glass.
    Bünz J; Brink T; Tsuchiya K; Meng F; Wilde G; Albe K
    Phys Rev Lett; 2014 Apr; 112(13):135501. PubMed ID: 24745435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.
    Wang D; Zhao SJ; Liu LM
    J Phys Chem A; 2015 Jan; 119(4):806-14. PubMed ID: 25547898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability.
    Fujita T; Konno K; Zhang W; Kumar V; Matsuura M; Inoue A; Sakurai T; Chen MW
    Phys Rev Lett; 2009 Aug; 103(7):075502. PubMed ID: 19792657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.
    Soinila E; Pihlajamäki T; Bossuyt S; Hänninen H
    Rev Sci Instrum; 2011 Jul; 82(7):073901. PubMed ID: 21806193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage.
    Chen H; Xu J; Chen PC; Fang X; Qiu J; Fu Y; Zhou C
    ACS Nano; 2011 Oct; 5(10):8383-90. PubMed ID: 21942645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-liquid transition in a strong bulk metallic glass-forming liquid.
    Wei S; Yang F; Bednarcik J; Kaban I; Shuleshova O; Meyer A; Busch R
    Nat Commun; 2013; 4():2083. PubMed ID: 23817404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.
    Shi P; Zhang J; Lin HY; Bohn PW
    Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation in amorphous solids.
    Guan P; Lu S; Spector MJ; Valavala PK; Falk ML
    Phys Rev Lett; 2013 May; 110(18):185502. PubMed ID: 23683215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-fabrication with metallic glass-an exotic material for nano-electromechanical systems.
    Sharma P; Kaushik N; Kimura H; Saotome Y; Inoue A
    Nanotechnology; 2007 Jan; 18(3):035302. PubMed ID: 19636117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics.
    Tilocca A
    J Chem Phys; 2013 Sep; 139(11):114501. PubMed ID: 24070291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.
    Hetzel M; Lugstein A; Zeiner C; Wójcik T; Pongratz P; Bertagnolli E
    Nanotechnology; 2011 Sep; 22(39):395601. PubMed ID: 21891844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.