These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25417194)

  • 1. Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots.
    Yoneyama K; Kisugi T; Xie X; Arakawa R; Ezawa T; Nomura T; Yoneyama K
    Planta; 2015 Mar; 241(3):687-98. PubMed ID: 25417194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum.
    Yoneyama K; Xie X; Kisugi T; Nomura T; Yoneyama K
    Planta; 2013 Nov; 238(5):885-94. PubMed ID: 23925853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of strigolactones in root development.
    Sun H; Tao J; Gu P; Xu G; Zhang Y
    Plant Signal Behav; 2016; 11(1):e1110662. PubMed ID: 26515106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strigolactone signal is required for adventitious root formation in rice.
    Sun H; Tao J; Hou M; Huang S; Chen S; Liang Z; Xie T; Wei Y; Xie X; Yoneyama K; Xu G; Zhang Y
    Ann Bot; 2015 Jun; 115(7):1155-62. PubMed ID: 25888593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites.
    Yoneyama K; Xie X; Kusumoto D; Sekimoto H; Sugimoto Y; Takeuchi Y; Yoneyama K
    Planta; 2007 Dec; 227(1):125-32. PubMed ID: 17684758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus).
    Meng ZB; You XD; Suo D; Chen YL; Tang C; Yang JL; Zheng SJ
    Physiol Plant; 2013 Aug; 148(4):481-9. PubMed ID: 23067249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
    Borghi L; Liu GW; Emonet A; Kretzschmar T; Martinoia E
    Planta; 2016 Jun; 243(6):1351-60. PubMed ID: 27040840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoot has important roles in strigolactone production of rice roots under sulfur deficiency.
    Shindo M; Nagasaka S; Kashiwada S; Shimomura K; Umehara M
    Plant Signal Behav; 2021 Apr; 16(4):1880738. PubMed ID: 33538220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactones are regulators of root development.
    Koltai H
    New Phytol; 2011 May; 190(3):545-9. PubMed ID: 21638793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strigolactone story.
    Xie X; Yoneyama K; Yoneyama K
    Annu Rev Phytopathol; 2010; 48():93-117. PubMed ID: 20687831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench.
    Motonami N; Ueno K; Nakashima H; Nomura S; Mizutani M; Takikawa H; Sugimoto Y
    Phytochemistry; 2013 Sep; 93():41-8. PubMed ID: 23597492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis.
    Wakabayashi T; Ishiwa S; Shida K; Motonami N; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Plant Physiol; 2021 Apr; 185(3):902-913. PubMed ID: 33793911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions.
    Koltai H
    Ann Bot; 2013 Jul; 112(2):409-15. PubMed ID: 23059852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles for IBA-derived auxin in plant development.
    Frick EM; Strader LC
    J Exp Bot; 2018 Jan; 69(2):169-177. PubMed ID: 28992091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular events of strigolactone signalling and their crosstalk with auxin in roots.
    Koltai H
    J Exp Bot; 2015 Aug; 66(16):4855-61. PubMed ID: 25900617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat.
    Garnica M; Bacaicoa E; Mora V; San Francisco S; Baigorri R; ZamarreƱo AM; Garcia-Mina JM
    BMC Plant Biol; 2018 Jun; 18(1):105. PubMed ID: 29866051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones.
    Mohemed N; Charnikhova T; Bakker EJ; van Ast A; Babiker AG; Bouwmeester HJ
    Pest Manag Sci; 2016 Nov; 72(11):2082-2090. PubMed ID: 27611187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum.
    Kochar M; Srivastava S
    J Basic Microbiol; 2012 Apr; 52(2):123-31. PubMed ID: 21656820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.