These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25417548)

  • 1. MARTINI coarse-grained model for crystalline cellulose microfibers.
    López CA; Bellesia G; Redondo A; Langan P; Chundawat SP; Dale BE; Marrink SJ; Gnanakaran S
    J Phys Chem B; 2015 Jan; 119(2):465-73. PubMed ID: 25417548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained model for the interconversion between native and liquid ammonia-treated crystalline cellulose.
    Bellesia G; Chundawat SP; Langan P; Redondo A; Dale BE; Gnanakaran S
    J Phys Chem B; 2012 Jul; 116(28):8031-7. PubMed ID: 22712833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Martini 3 Coarse-Grained Force Field for Carbohydrates.
    Grünewald F; Punt MH; Jefferys EE; Vainikka PA; König M; Virtanen V; Meyer TA; Pezeshkian W; Gormley AJ; Karonen M; Sansom MSP; Souza PCT; Marrink SJ
    J Chem Theory Comput; 2022 Dec; 18(12):7555-7569. PubMed ID: 36342474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a coarse-grained α-chitin model on the basis of MARTINI forcefield.
    Yu Z; Lau D
    J Mol Model; 2015 May; 21(5):128. PubMed ID: 25914123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent.
    Arnarez C; Uusitalo JJ; Masman MF; Ingólfsson HI; de Jong DH; Melo MN; Periole X; de Vries AH; Marrink SJ
    J Chem Theory Comput; 2015 Jan; 11(1):260-75. PubMed ID: 26574224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of coarse-grained mapping schemes for polysaccharide chains in cellulose.
    Markutsya S; Devarajan A; Baluyut JY; Windus TL; Gordon MS; Lamm MH
    J Chem Phys; 2013 Jun; 138(21):214108. PubMed ID: 23758359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds.
    Bu L; Beckham GT; Crowley MF; Chang CH; Matthews JF; Bomble YJ; Adney WS; Himmel ME; Nimlos MR
    J Phys Chem B; 2009 Aug; 113(31):10994-1002. PubMed ID: 19594145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal response in crystalline Ibeta cellulose: a molecular dynamics study.
    Bergenstråhle M; Berglund LA; Mazeau K
    J Phys Chem B; 2007 Aug; 111(30):9138-45. PubMed ID: 17628097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-Grained Molecular Dynamics Force-Field for Polyacrylamide in Infinite Dilution Derived from Iterative Boltzmann Inversion and MARTINI Force-Field.
    Banerjee P; Roy S; Nair N
    J Phys Chem B; 2018 Feb; 122(4):1516-1524. PubMed ID: 29278334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations.
    Pang J; Mehandzhiyski AY; Zozoulenko I
    Carbohydr Polym; 2023 Aug; 313():120853. PubMed ID: 37182953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The MARTINI force field: coarse grained model for biomolecular simulations.
    Marrink SJ; Risselada HJ; Yefimov S; Tieleman DP; de Vries AH
    J Phys Chem B; 2007 Jul; 111(27):7812-24. PubMed ID: 17569554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a Coarse-Grained Model for Bacterial Cell Walls: Evaluating Mechanical Properties and Free Energy Barriers.
    Vaiwala R; Sharma P; Puranik M; Ayappa KG
    J Chem Theory Comput; 2020 Aug; 16(8):5369-5384. PubMed ID: 32628849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Martini Coarse-Grained Force Field: Extension to Carbohydrates.
    López CA; Rzepiela AJ; de Vries AH; Dijkhuizen L; Hünenberger PH; Marrink SJ
    J Chem Theory Comput; 2009 Dec; 5(12):3195-210. PubMed ID: 26602504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and Car-Parrinello molecular dynamics.
    Hayakawa D; Nishiyama Y; Mazeau K; Ueda K
    Carbohydr Res; 2017 Sep; 449():103-113. PubMed ID: 28759814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks.
    Shen T; Gnanakaran S
    Biophys J; 2009 Apr; 96(8):3032-40. PubMed ID: 19383449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Solvent-Free Coarse Grain Model for Crystalline and Amorphous Cellulose Fibrils.
    Srinivas G; Cheng X; Smith JC
    J Chem Theory Comput; 2011 Aug; 7(8):2539-48. PubMed ID: 26606627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.
    Matthews JF; Beckham GT; Bergenstråhle-Wohlert M; Brady JW; Himmel ME; Crowley MF
    J Chem Theory Comput; 2012 Feb; 8(2):735-48. PubMed ID: 26596620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation studies of the insolubility of cellulose.
    Bergenstråhle M; Wohlert J; Himmel ME; Brady JW
    Carbohydr Res; 2010 Sep; 345(14):2060-6. PubMed ID: 20705283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.