These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2541766)

  • 1. Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: importance of the protein rearrangement for the intracomplex electron-transfer reaction.
    Peerey LM; Kostić NM
    Biochemistry; 1989 Feb; 28(4):1861-8. PubMed ID: 2541766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unimolecular and bimolecular oxidoreduction reactions involving diprotein complexes of cytochrome c and plastocyanin. Dependence of electron-transfer reactivity on charge and orientation of the docked metalloproteins.
    Peerey LM; Brothers HM; Hazzard JT; Tollin G; Kostić NM
    Biochemistry; 1991 Sep; 30(38):9297-304. PubMed ID: 1654092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metalloprotein complexes for the study of electron-transfer reactions. Characterization of diprotein complexes obtained by covalent cross-linking of cytochrome c and plastocyanin with a carbodiimide.
    Zhou JS; Brothers HM; Neddersen JP; Peerey LM; Cotton TM; Kostić NM
    Bioconjug Chem; 1992; 3(5):382-90. PubMed ID: 1329988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced electron-transfer reaction in a ternary system involving zinc cytochrome c and plastocyanin. Interplay of monopolar and dipolar electrostatic interactions between metalloproteins.
    Zhou JS; Kostić NM
    Biochemistry; 1992 Aug; 31(33):7543-50. PubMed ID: 1324717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway.
    Crnogorac MM; Shen C; Young S; Hansson O; Kostić NM
    Biochemistry; 1996 Dec; 35(51):16465-74. PubMed ID: 8987979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of single and double mutations in plastocyanin on the rate constant and activation parameters for the rearrangement gating the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin.
    Ivković-Jensen MM; Ullmann GM; Young S; Hansson O; Crnogorac MM; Ejdebäck M; Kostić NM
    Biochemistry; 1998 Jun; 37(26):9557-69. PubMed ID: 9649339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin.
    Meyer TE; Zhao ZG; Cusanovich MA; Tollin G
    Biochemistry; 1993 May; 32(17):4552-9. PubMed ID: 8387337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR and kinetic characterization of the interaction between French bean plastocyanin and horse cytochrome c.
    King GC; Binstead RA; Wright PE
    Biochim Biophys Acta; 1985 Feb; 806(2):262-71. PubMed ID: 2982394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of intracomplex electron transfer and of reduction of the components of covalent and noncovalent complexes of cytochrome c and cytochrome c peroxidase by free flavin semiquinones.
    Hazzard JT; Moench SJ; Erman JE; Satterlee JD; Tollin G
    Biochemistry; 1988 Mar; 27(6):2002-8. PubMed ID: 2837280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced electron transfer from the triplet state of zinc cytochrome c to ferricytochrome b5 is gated by configurational fluctuations of the diprotein complex.
    Qin L; Kostić NM
    Biochemistry; 1994 Oct; 33(42):12592-9. PubMed ID: 7918484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on a cross-linked complex between plastocyanin cytochrome f.
    Takabe T; Ishikawa H
    J Biochem; 1989 Jan; 105(1):98-102. PubMed ID: 2738049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser flash photolysis as a probe of redox protein-membrane interactions: effect of binding of spinach plastocyanin and horse cytochrome c to lipid bilayer vesicles on the kinetics of reduction by flavin semiquinone.
    Senthilathipan V; Tollin G
    Biochemistry; 1989 Feb; 28(3):1133-8. PubMed ID: 2540816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-transfer reactions of cytochrome f with flavin semiquinones and with plastocyanin. Importance of protein-protein electrostatic interactions and of donor-acceptor coupling.
    Qin L; Kostić NM
    Biochemistry; 1992 Jun; 31(22):5145-50. PubMed ID: 1606137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer reactions between cytochrome f and plastocyanin from Brassica komatsuna.
    Niwa S; Ishikawa H; Nikai S; Takabe T
    J Biochem; 1980 Oct; 88(4):1177-83. PubMed ID: 7451412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enforced interaction of one molecule of plastocyanin with two molecules of cytochrome c and an electron-transfer reaction involving the hydrophobic patch on the plastocyanin surface.
    Qin L; Kostić NM
    Biochemistry; 1996 Mar; 35(11):3379-86. PubMed ID: 8639487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electron-transfer site of spinach plastocyanin.
    Rush JD; Levine F; Koppenol WH
    Biochemistry; 1988 Aug; 27(16):5876-84. PubMed ID: 2847776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking biological electron transport in sol-gel glass: photoinduced electron transfer from zinc cytochrome C to plastocyanin or cytochrome C mediated by mobile inorganic complexes.
    Pletneva EV; Crnogorac MM; Kostić NM
    J Am Chem Soc; 2002 Dec; 124(48):14342-54. PubMed ID: 12452708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome f and plastocyanin kinetics in Chlorella pyrenoidosa. II. Reduction kinetics and electric field increase in the 10 ms range.
    Bouges-Bocquet B
    Biochim Biophys Acta; 1977 Nov; 462(2):371-9. PubMed ID: 588574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c(6) from Chlamydomonas reinhardtii.
    Grove TZ; Kostić NM
    J Am Chem Soc; 2003 Sep; 125(35):10598-607. PubMed ID: 12940743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature on the kinetics of the gated electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of configurational fluctuation of the diprotein complex.
    Ivković-Jensen MM; Kostić NM
    Biochemistry; 1996 Nov; 35(47):15095-106. PubMed ID: 8942677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.