These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 2541774)
41. Metabolic role of cytoplasmic isozymes of 5,10-methylenetetrahydrofolate dehydrogenase in Saccharomyces cerevisiae. West MG; Horne DW; Appling DR Biochemistry; 1996 Mar; 35(9):3122-32. PubMed ID: 8608153 [TBL] [Abstract][Full Text] [Related]
42. NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is the mammalian homolog of the mitochondrial enzyme encoded by the yeast MIS1 gene. Yang XM; MacKenzie RE Biochemistry; 1993 Oct; 32(41):11118-23. PubMed ID: 8218174 [TBL] [Abstract][Full Text] [Related]
43. Heparin-agarose chromatography for the purification of tetrahydrofolate utilizing enzymes: C1-tetrahydrofolate synthase and 10-formyltetrahydrofolate synthetase. Staben C; Whitehead TR; Rabinowitz JC Anal Biochem; 1987 Apr; 162(1):257-64. PubMed ID: 3300414 [TBL] [Abstract][Full Text] [Related]
44. Chemical synthesis of folylpolyglutamates, their reduction to tetrahydro derivatives, and their activity with yeast C1-THF synthase. Rabinowitz JC Adv Exp Med Biol; 1983; 163():75-83. PubMed ID: 6351555 [TBL] [Abstract][Full Text] [Related]
45. Physiological role of FolD (methylenetetrahydrofolate dehydrogenase), FchA (methenyltetrahydrofolate cyclohydrolase) and Fhs (formyltetrahydrofolate synthetase) from Clostridium perfringens in a heterologous model of Escherichia coli. Aluri S; Sah S; Miryala S; Varshney U Microbiology (Reading); 2016 Jan; 162(1):145-155. PubMed ID: 26531681 [TBL] [Abstract][Full Text] [Related]
46. Structures of three inhibitor complexes provide insight into the reaction mechanism of the human methylenetetrahydrofolate dehydrogenase/cyclohydrolase. Schmidt A; Wu H; MacKenzie RE; Chen VJ; Bewly JR; Ray JE; Toth JE; Cygler M Biochemistry; 2000 May; 39(21):6325-35. PubMed ID: 10828945 [TBL] [Abstract][Full Text] [Related]
47. Chromosomal localization of the gene for the human trifunctional enzyme, methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. Rozen R; Barton D; Du J; Hum DW; MacKenzie RE; Francke U Am J Hum Genet; 1989 Jun; 44(6):781-6. PubMed ID: 2786332 [TBL] [Abstract][Full Text] [Related]
48. Channeling efficiency in the bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase domain: the effects of site-directed mutagenesis of NADP binding residues. Pawelek PD; Allaire M; Cygler M; MacKenzie RE Biochim Biophys Acta; 2000 Jun; 1479(1-2):59-68. PubMed ID: 11004530 [TBL] [Abstract][Full Text] [Related]
50. Formyl-methenyl-methylenetetrahydrofolate synthetase from rabbit liver (combined). Evidence for a single site in the conversion of 5,10-methylenetetrahydrofolate to 10-formyltetrahydrofolate. Schirch L Arch Biochem Biophys; 1978 Aug; 189(2):283-90. PubMed ID: 30404 [No Abstract] [Full Text] [Related]
51. Primary structure of a folate-dependent trifunctional enzyme from Spodoptera frugiperda. Tremblay GB; MacKenzie RE Biochim Biophys Acta; 1995 Mar; 1261(1):129-33. PubMed ID: 7893749 [TBL] [Abstract][Full Text] [Related]
52. 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Prabhu V; Chatson KB; Abrams GD; King J Plant Physiol; 1996 Sep; 112(1):207-16. PubMed ID: 8819325 [TBL] [Abstract][Full Text] [Related]
53. Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. Christensen KE; Mackenzie RE Vitam Horm; 2008; 79():393-410. PubMed ID: 18804703 [TBL] [Abstract][Full Text] [Related]
54. Tetrahydropterolypolyglutamate derivatives as substrates of two multifunctional proteins with folate-dependent enzyme activities. Mackenzie RE; Baugh CM Biochim Biophys Acta; 1980 Jan; 611(1):187-95. PubMed ID: 7350916 [No Abstract] [Full Text] [Related]
55. Methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase and formyltetrahydrofolate synthetase from porcine liver. Isolation of a dehydrogenase-cyclohydrolase fragment from the multifunctional enzyme. Tan LU; Mackenzie RE Biochim Biophys Acta; 1977 Nov; 485(1):52-9. PubMed ID: 562190 [TBL] [Abstract][Full Text] [Related]
56. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Pasternack LB; Laude DA; Appling DR Biochemistry; 1992 Sep; 31(37):8713-9. PubMed ID: 1390656 [TBL] [Abstract][Full Text] [Related]
57. The NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase is not expressed in Spodoptera frugiperda cells. Tremblay GB; Mejia NR; MacKenzie RE J Biol Chem; 1992 Apr; 267(12):8281-5. PubMed ID: 1569082 [TBL] [Abstract][Full Text] [Related]
59. A pseudogene on the X chromosome for the human trifunctional enzyme MTHFD (methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase). Italiano C; John SW; Hum DW; MacKenzie RE; Rozen R Genomics; 1991 Aug; 10(4):1073-4. PubMed ID: 1916813 [TBL] [Abstract][Full Text] [Related]
60. Cooperative regulation of ADE3 transcription by Gcn4p and Bas1p in Saccharomyces cerevisiae. Joo YJ; Kim JA; Baek JH; Seong KM; Han KD; Song JM; Choi JY; Kim J Eukaryot Cell; 2009 Aug; 8(8):1268-77. PubMed ID: 19525417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]