BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25418167)

  • 1. Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity.
    Lin D; Grossfield A
    Biophys J; 2014 Oct; 107(8):1862-1872. PubMed ID: 25418167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity.
    Lin D; Grossfield A
    Biophys J; 2015 Aug; 109(4):750-9. PubMed ID: 26287627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics.
    Horn JN; Sengillo JD; Lin D; Romo TD; Grossfield A
    Biochim Biophys Acta; 2012 Feb; 1818(2):212-8. PubMed ID: 21819964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the mechanism of antimicrobial lipopeptides with all-atom molecular dynamics.
    Horn JN; Romo TD; Grossfield A
    Biochemistry; 2013 Aug; 52(33):5604-10. PubMed ID: 23875688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.
    Sikorska E; Dawgul M; Greber K; Iłowska E; Pogorzelska A; Kamysz W
    Biochim Biophys Acta; 2014 Oct; 1838(10):2625-34. PubMed ID: 24978107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers.
    Shahane G; Ding W; Palaiokostas M; Azevedo HS; Orsi M
    J Membr Biol; 2019 Oct; 252(4-5):317-329. PubMed ID: 31098677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are the short cationic lipopeptides bacterial membrane disruptors? Structure-Activity Relationship and molecular dynamic evaluation.
    Greber KE; Zielińska J; Nierzwicki Ł; Ciura K; Kawczak P; Nowakowska J; Bączek T; Sawicki W
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):93-99. PubMed ID: 30463703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide-Membrane Interaction and Membrane Curvature.
    Vineeth Kumar TV; Sanil G
    Curr Protein Pept Sci; 2017; 18(12):1263-1272. PubMed ID: 28699512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of lipid composition of model membranes on methacrylate antimicrobial polymer-membrane interactions.
    Baul U; Vemparala S
    Soft Matter; 2017 Oct; 13(41):7665-7676. PubMed ID: 28991313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral Lipopeptide-Cell Membrane Interaction Is Influenced by PEG Linker Length.
    Augusto MT; Hollmann A; Porotto M; Moscona A; Santos NC
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28714870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: an amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity.
    Yu L; Ding JL; Ho B; Wohland T
    Biochim Biophys Acta; 2005 Oct; 1716(1):29-39. PubMed ID: 16168384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short arginine-rich lipopeptides: From self-assembly to antimicrobial activity.
    Sikorska E; Stachurski O; Neubauer D; Małuch I; Wyrzykowski D; Bauer M; Brzozowski K; Kamysz W
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2242-2251. PubMed ID: 30409520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity.
    Henderson JM; Iyengar NS; Lam KLH; Maldonado E; Suwatthee T; Roy I; Waring AJ; Lee KYC
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182977. PubMed ID: 31077677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing interactions for antimicrobial selectivity based on charge complementarity.
    von Deuster CI; Knecht V
    Biochim Biophys Acta; 2011 Dec; 1808(12):2867-76. PubMed ID: 21893025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.