These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25418198)

  • 21. In Vitro and In Vivo Evaluation of Pectin/Copper Exchanged Faujasite Composite Membranes.
    Ninan N; Muthiah M; Park IK; Elain A; Wong TW; Thomas S; Grohens Y
    J Biomed Nanotechnol; 2015 Sep; 11(9):1550-67. PubMed ID: 26485926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of Bacteria- and Blood-Repellent Superhydrophobic Polyurethane Sponge Materials.
    Ozkan E; Mondal A; Singha P; Douglass M; Hopkins SP; Devine R; Garren M; Manuel J; Warnock J; Handa H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51160-51173. PubMed ID: 33143413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures.
    Dahoumane SA; Wijesekera K; Filipe CD; Brennan JD
    J Colloid Interface Sci; 2014 Feb; 416():67-72. PubMed ID: 24370403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review.
    Shi LE; Li ZH; Zheng W; Zhao YF; Jin YF; Tang ZX
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(2):173-86. PubMed ID: 24219062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.
    Zhang Y; Ge D; Yang S
    J Colloid Interface Sci; 2014 Jun; 423():101-7. PubMed ID: 24703674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic nitric oxide-releasing xerogels.
    Storm WL; Youn J; Reighard KP; Worley BV; Lodaya HM; Shin JH; Schoenfisch MH
    Acta Biomater; 2014 Aug; 10(8):3442-8. PubMed ID: 24797527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing interfacial interactions of bacteria on metal nanoparticles and substrates with different surface properties.
    Luo J; Chan WB; Wang L; Zhong CJ
    Int J Antimicrob Agents; 2010 Dec; 36(6):549-56. PubMed ID: 20952165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.
    Jo YK; Seo JH; Choi BH; Kim BJ; Shin HH; Hwang BH; Cha HJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20242-53. PubMed ID: 25311392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical nested-network nanostructure by dealloying.
    Qi Z; Weissmüller J
    ACS Nano; 2013 Jul; 7(7):5948-54. PubMed ID: 23789979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters.
    Kumar CG; Sujitha P
    Nanotechnology; 2014 Aug; 25(32):325101. PubMed ID: 25060660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is There a Threshold in the Antibacterial Action of Superhydrophobic Surfaces?
    Ellinas K; Kefallinou D; Stamatakis K; Gogolides E; Tserepi A
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39781-39789. PubMed ID: 29058866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers.
    Pinto RJ; Marques PA; Neto CP; Trindade T; Daina S; Sadocco P
    Acta Biomater; 2009 Jul; 5(6):2279-89. PubMed ID: 19285455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.
    Ishizaki T; Sakamoto M
    Langmuir; 2011 Mar; 27(6):2375-81. PubMed ID: 21319782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning from nature: introducing an epiphyte-host relationship in the synthesis of alloy nanoparticles by co-reduction methods.
    Yu Y; Zhang Q; Yao Q; Zhan Y; Lu M; Yang L; Xu C; Xie J; Lee JY
    Chem Commun (Camb); 2014 Sep; 50(68):9765-8. PubMed ID: 25025323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward potent antibiofilm degradable medical devices: a generic method for the antibacterial surface modification of polylactide.
    El Habnouni S; Lavigne JP; Darcos V; Porsio B; Garric X; Coudane J; Nottelet B
    Acta Biomater; 2013 Aug; 9(8):7709-18. PubMed ID: 23603533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property.
    Gao N; Chen Y; Jiang J
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11307-14. PubMed ID: 24138679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area.
    Horie M; Fujita K; Kato H; Endoh S; Nishio K; Komaba LK; Nakamura A; Miyauchi A; Kinugasa S; Hagihara Y; Niki E; Yoshida Y; Iwahashi H
    Metallomics; 2012 Apr; 4(4):350-60. PubMed ID: 22419205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.