These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25418293)

  • 21. Mechanical Behavior of a Bacillus subtilis Pellicle.
    Hollenbeck EC; Douarche C; Allain JM; Roger P; Regeard C; Cegelski L; Fuller GG; Raspaud E
    J Phys Chem B; 2016 Jul; 120(26):6080-8. PubMed ID: 27046510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quorum-sensing control of matrix protein production drives fractal wrinkling and interfacial localization of Vibrio cholerae pellicles.
    Qin B; Bassler BL
    Nat Commun; 2022 Oct; 13(1):6063. PubMed ID: 36229546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular DNA builds and interacts with vibrio polysaccharide in the biofilm matrix formed by Vibrio cholerae.
    Kanampalliwar A; Singh DV
    Environ Microbiol Rep; 2020 Oct; 12(5):594-606. PubMed ID: 32686304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.
    Yan J; Sharo AG; Stone HA; Wingreen NS; Bassler BL
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5337-43. PubMed ID: 27555592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of rugose form of Vibrio cholerae O139 strain MO10.
    Mizunoe Y; Wai SN; Takade A; Yoshida SI
    Infect Immun; 1999 Feb; 67(2):958-63. PubMed ID: 9916115
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Wucher BR; Bartlett TM; Hoyos M; Papenfort K; Persat A; Nadell CD
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14216-14221. PubMed ID: 31239347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation.
    Wai SN; Mizunoe Y; Takade A; Kawabata SI; Yoshida SI
    Appl Environ Microbiol; 1998 Oct; 64(10):3648-55. PubMed ID: 9758780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae.
    Matz C; McDougald D; Moreno AM; Yung PY; Yildiz FH; Kjelleberg S
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16819-24. PubMed ID: 16267135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular matrix structure governs invasion resistance in bacterial biofilms.
    Nadell CD; Drescher K; Wingreen NS; Bassler BL
    ISME J; 2015 Aug; 9(8):1700-9. PubMed ID: 25603396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae.
    Zamorano-Sánchez D; Fong JC; Kilic S; Erill I; Yildiz FH
    J Bacteriol; 2015 Apr; 197(7):1221-35. PubMed ID: 25622616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface.
    Nait Chabane Y; Marti S; Rihouey C; Alexandre S; Hardouin J; Lesouhaitier O; Vila J; Kaplan JB; Jouenne T; Dé E
    PLoS One; 2014; 9(10):e111660. PubMed ID: 25360550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofilm Matrix Proteins.
    Fong JNC; Yildiz FH
    Microbiol Spectr; 2015 Apr; 3(2):. PubMed ID: 26104709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity.
    Mudrak B; Tamayo R
    Infect Immun; 2012 May; 80(5):1794-802. PubMed ID: 22354023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.
    Zhang Z; Christopher G
    Langmuir; 2016 Mar; 32(11):2724-30. PubMed ID: 26943272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. vpsA- and luxO-independent biofilms of Vibrio cholerae.
    Müller J; Miller MC; Nielsen AT; Schoolnik GK; Spormann AM
    FEMS Microbiol Lett; 2007 Oct; 275(2):199-206. PubMed ID: 17697110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine.
    Karatan E; Duncan TR; Watnick PI
    J Bacteriol; 2005 Nov; 187(21):7434-43. PubMed ID: 16237027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity.
    Maestre-Reyna M; Huang WC; Wu WJ; Singh PK; Hartmann R; Wang PH; Lee CC; Hikima T; Yamamoto M; Bessho Y; Drescher K; Tsai MD; Wang AH
    IUBMB Life; 2021 Feb; 73(2):418-431. PubMed ID: 33372380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation.
    Hammer BK; Bassler BL
    J Bacteriol; 2009 Jan; 191(1):169-77. PubMed ID: 18952786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilms deform soft surfaces and disrupt epithelia.
    Cont A; Rossy T; Al-Mayyah Z; Persat A
    Elife; 2020 Oct; 9():. PubMed ID: 33025904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.
    Yan J; Nadell CD; Stone HA; Wingreen NS; Bassler BL
    Nat Commun; 2017 Aug; 8(1):327. PubMed ID: 28835649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.