These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25418293)

  • 41. Temporal quorum-sensing induction regulates Vibrio cholerae biofilm architecture.
    Liu Z; Stirling FR; Zhu J
    Infect Immun; 2007 Jan; 75(1):122-6. PubMed ID: 17074850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae.
    Antonova ES; Hammer BK
    FEMS Microbiol Lett; 2011 Sep; 322(1):68-76. PubMed ID: 21658103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae.
    Peschek N; Herzog R; Singh PK; Sprenger M; Meyer F; Fröhlich KS; Schröger L; Bramkamp M; Drescher K; Papenfort K
    Nat Commun; 2020 Nov; 11(1):6067. PubMed ID: 33247102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae.
    Maestre-Reyna M; Wu WJ; Wang AH
    PLoS One; 2013; 8(12):e82458. PubMed ID: 24340031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water.
    Kierek K; Watnick PI
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14357-62. PubMed ID: 14614140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Circular pellicles formed by Pseudomonas alkylphenolica KL28 are a sophisticated architecture principally designed by matrix substance.
    Song MM; Veeranagouda Y; Ganzorig M; Lee K
    J Microbiol; 2018 Nov; 56(11):790-797. PubMed ID: 30353464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vibrio cholerae biofilms use modular adhesins with glycan-targeting and nonspecific surface binding domains for colonization.
    Huang X; Nero T; Weerasekera R; Matej KH; Hinbest A; Jiang Z; Lee RF; Wu L; Chak C; Nijjer J; Gibaldi I; Yang H; Gamble N; Ng WL; Malaker SA; Sumigray K; Olson R; Yan J
    Nat Commun; 2023 Apr; 14(1):2104. PubMed ID: 37055389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inverse regulation of
    Bridges AA; Bassler BL
    Elife; 2021 Apr; 10():. PubMed ID: 33856344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces.
    Absalon C; Van Dellen K; Watnick PI
    PLoS Pathog; 2011 Aug; 7(8):e1002210. PubMed ID: 21901100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.
    Reichhardt C; Fong JC; Yildiz F; Cegelski L
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):378-83. PubMed ID: 24911407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential response of Vibrio cholerae planktonic and biofilm cells to autoinducer 2 deficiency.
    Ali SA; Benitez JA
    Microbiol Immunol; 2009 Oct; 53(10):582-6. PubMed ID: 19780972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.
    Drescher K; Dunkel J; Nadell CD; van Teeffelen S; Grnja I; Wingreen NS; Stone HA; Bassler BL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E2066-72. PubMed ID: 26933214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studying bacterial hydrophobicity and biofilm formation at liquid-liquid interfaces through interfacial rheology and pendant drop tensiometry.
    Rühs PA; Böcker L; Inglis RF; Fischer P
    Colloids Surf B Biointerfaces; 2014 May; 117():174-84. PubMed ID: 24632390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-frequency rugose exopolysaccharide production by Vibrio cholerae.
    Ali A; Rashid MH; Karaolis DK
    Appl Environ Microbiol; 2002 Nov; 68(11):5773-8. PubMed ID: 12406780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gram-negative bacteria can also form pellicles.
    Armitano J; Méjean V; Jourlin-Castelli C
    Environ Microbiol Rep; 2014 Dec; 6(6):534-44. PubMed ID: 25756106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways.
    McGinnis MW; Parker ZM; Walter NE; Rutkovsky AC; Cartaya-Marin C; Karatan E
    FEMS Microbiol Lett; 2009 Oct; 299(2):166-74. PubMed ID: 19694812
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development.
    Moorthy S; Watnick PI
    Mol Microbiol; 2005 Sep; 57(6):1623-35. PubMed ID: 16135229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical instability and interfacial energy drive biofilm morphogenesis.
    Yan J; Fei C; Mao S; Moreau A; Wingreen NS; Košmrlj A; Stone HA; Bassler BL
    Elife; 2019 Mar; 8():. PubMed ID: 30848725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biofilm recruitment of Vibrio cholerae by matrix proteolysis.
    Duperthuy M; Uhlin BE; Wai SN
    Trends Microbiol; 2015 Nov; 23(11):667-668. PubMed ID: 26439292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EFFECT OF ANTIBACTERIAL PREPARATIONS ON VIBRIO CHOLERAE EL TOR BIOFILMS.
    Selyanskaya NA; Titova SV; Golovin SN; Egiazaryan LA; Verkina LM; Trishina AV
    Zh Mikrobiol Epidemiol Immunobiol; 2017 Mar; (2):8-15. PubMed ID: 30695530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.