These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25418299)

  • 21. The PDZ-binding motif of the beta2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes.
    Xiang Y; Kobilka B
    Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10776-81. PubMed ID: 12954981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors.
    Jafurulla M; Tiwari S; Chattopadhyay A
    Biochem Biophys Res Commun; 2011 Jan; 404(1):569-73. PubMed ID: 21146498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors.
    Anborgh PH; Seachrist JL; Dale LB; Ferguson SS
    Mol Endocrinol; 2000 Dec; 14(12):2040-53. PubMed ID: 11117533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmembrane helix 6 observed at the interface of β2AR homodimers in blind docking studies.
    Koroglu A; Akten ED
    J Biomol Struct Dyn; 2015; 33(7):1503-15. PubMed ID: 25262920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening.
    Wang YS; Liu D; Wyss DF
    Magn Reson Chem; 2004 Jun; 42(6):485-9. PubMed ID: 15137040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insulin induces IRS2-dependent and GRK2-mediated β2AR internalization to attenuate βAR signaling in cardiomyocytes.
    Fu Q; Xu B; Parikh D; Cervantes D; Xiang YK
    Cell Signal; 2015 Mar; 27(3):707-15. PubMed ID: 25460042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical characterization of beta2-adrenergic receptor dimers and oligomers.
    Salahpour A; Bonin H; Bhalla S; Petäjä-Repo U; Bouvier M
    Biol Chem; 2003 Jan; 384(1):117-23. PubMed ID: 12674505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactive oxygen species are required for β2 adrenergic receptor-β-arrestin interactions and signaling to ERK1/2.
    Singh M; Moniri NH
    Biochem Pharmacol; 2012 Sep; 84(5):661-9. PubMed ID: 22728070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
    Goetz A; Lanig H; Gmeiner P; Clark T
    J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations.
    Ranganathan A; Dror RO; Carlsson J
    Biochemistry; 2014 Nov; 53(46):7283-96. PubMed ID: 25347607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Position of transmembrane helix 6 determines receptor G protein coupling specificity.
    Rose AS; Elgeti M; Zachariae U; Grubmüller H; Hofmann KP; Scheerer P; Hildebrand PW
    J Am Chem Soc; 2014 Aug; 136(32):11244-7. PubMed ID: 25046433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of lipid-mediated effects in β₂-adrenergic receptor dimerization.
    Prasanna X; Chattopadhyay A; Sengupta D
    Adv Exp Med Biol; 2015; 842():247-61. PubMed ID: 25408348
    [No Abstract]   [Full Text] [Related]  

  • 33. Evidence that specific interactions play a role in the cholesterol sensitivity of G protein-coupled receptors.
    Geiger J; Sexton R; Al-Sahouri Z; Lee MY; Chun E; Harikumar KG; Miller LJ; Beckstein O; Liu W
    Biochim Biophys Acta Biomembr; 2021 Sep; 1863(9):183557. PubMed ID: 33444621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rab1 interacts directly with the β2-adrenergic receptor to regulate receptor anterograde trafficking.
    Hammad MM; Kuang YQ; Morse A; Dupré DJ
    Biol Chem; 2012 May; 393(6):541-6. PubMed ID: 22628317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of cardiac contractility by Rab4-modulated beta2-adrenergic receptor recycling.
    Odley A; Hahn HS; Lynch RA; Marreez Y; Osinska H; Robbins J; Dorn GW
    Proc Natl Acad Sci U S A; 2004 May; 101(18):7082-7. PubMed ID: 15105445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the beta2-adrenergic receptor using phosphoserine-specific antibodies.
    Tran TM; Friedman J; Qunaibi E; Baameur F; Moore RH; Clark RB
    Mol Pharmacol; 2004 Jan; 65(1):196-206. PubMed ID: 14722251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of the beta2-adrenergic receptor in plasma membranes by intrinsic GRK5.
    Tran TM; Jorgensen R; Clark RB
    Biochemistry; 2007 Dec; 46(50):14438-49. PubMed ID: 18034461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CHIP-MYTH: a novel interactive proteomics method for the assessment of agonist-dependent interactions of the human β₂-adrenergic receptor.
    Kittanakom S; Barrios-Rodiles M; Petschnigg J; Arnoldo A; Wong V; Kotlyar M; Heisler LE; Jurisica I; Wrana JL; Nislow C; Stagljar I
    Biochem Biophys Res Commun; 2014 Mar; 445(4):746-56. PubMed ID: 24561123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular insights into the dynamics of pharmacogenetically important N-terminal variants of the human β2-adrenergic receptor.
    Shahane G; Parsania C; Sengupta D; Joshi M
    PLoS Comput Biol; 2014 Dec; 10(12):e1004006. PubMed ID: 25501358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the conformation transition in the activation pathway of β2 adrenergic receptor via a targeted molecular dynamics simulation.
    Xiao X; Zeng X; Yuan Y; Gao N; Guo Y; Pu X; Li M
    Phys Chem Chem Phys; 2015 Jan; 17(4):2512-22. PubMed ID: 25494239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.