These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25418477)

  • 1. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells.
    Wang D; Su G
    Sci Rep; 2014 Nov; 4():7165. PubMed ID: 25418477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric back scattering patterns for light trapping in thin-film Si solar cells.
    van Lare M; Lenzmann F; Polman A
    Opt Express; 2013 Sep; 21(18):20738-46. PubMed ID: 24103947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics.
    Wang P; Menon R
    Opt Express; 2013 Mar; 21(5):6274-85. PubMed ID: 23482196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Light Trapping in Thin Film Silicon Solar Cells with Nano- and Microscale Structures on Glass Substrate.
    Bong S; Ahn S; Anh le HT; Kim S; Park H; Shin C; Park J; Lee Y; Yi J
    J Nanosci Nanotechnol; 2016 May; 16(5):4978-83. PubMed ID: 27483855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20(23):A997-1004. PubMed ID: 23326848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20 Suppl 6():A997-1004. PubMed ID: 23187677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sinusoidal nanotextures for light management in silicon thin-film solar cells.
    Köppel G; Rech B; Becker C
    Nanoscale; 2016 Apr; 8(16):8722-8. PubMed ID: 27065440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of modified double-sided grating structures on efficiency enhancement of thin-film silicon solar cells.
    Panda A; Maiti S; Palodhi K; Chakraborty R
    Appl Opt; 2020 Oct; 59(30):9532-9539. PubMed ID: 33104673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells.
    Leem JW; Yu JS
    Opt Express; 2011 May; 19 Suppl 3():A258-68. PubMed ID: 21643367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells.
    Da Y; Xuan Y
    Opt Express; 2013 Nov; 21 Suppl 6():A1065-77. PubMed ID: 24514926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing two-level hierarchical particles for thin-film solar cells.
    Zhou S; Hunang X; Li Q; Xie YM
    Opt Express; 2013 Mar; 21 Suppl 2():A285-94. PubMed ID: 23482291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
    Ram SK; Desta D; Rizzoli R; Bellettato M; Lyckegaard F; Jensen PB; Jeppesen BR; Chevallier J; Summonte C; Larsen AN; Balling P
    Nanoscale; 2017 Jun; 9(21):7169-7178. PubMed ID: 28513716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.
    Abdellatif S; Kirah K; Ghannam R; Khalil AS; Anis W
    Appl Opt; 2015 Jun; 54(17):5534-41. PubMed ID: 26192857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications.
    Zhou K; Guo Z; Liu S; Lee JH
    Materials (Basel); 2015 Jul; 8(7):4565-4581. PubMed ID: 28793457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.