BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25418533)

  • 1. Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance.
    Verstraeten SV; Fraga CG; Oteiza PI
    Food Funct; 2015 Jan; 6(1):32-41. PubMed ID: 25418533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol.
    Verstraeten SV; Jaggers GK; Fraga CG; Oteiza PI
    Biochim Biophys Acta; 2013 Nov; 1828(11):2646-53. PubMed ID: 23899501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants.
    Hernández I; Alegre L; Munné-Bosch S
    Phytochemistry; 2006 Jun; 67(11):1120-6. PubMed ID: 16712885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.
    Monagas M; Urpi-Sarda M; Sánchez-Patán F; Llorach R; Garrido I; Gómez-Cordovés C; Andres-Lacueva C; Bartolomé B
    Food Funct; 2010 Dec; 1(3):233-53. PubMed ID: 21776473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo.
    Spencer JP; Schroeter H; Rechner AR; Rice-Evans C
    Antioxid Redox Signal; 2001 Dec; 3(6):1023-39. PubMed ID: 11813978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure.
    Verstraeten SV; Keen CL; Schmitz HH; Fraga CG; Oteiza PI
    Free Radic Biol Med; 2003 Jan; 34(1):84-92. PubMed ID: 12498983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling.
    Fraga CG; Oteiza PI
    Free Radic Biol Med; 2011 Aug; 51(4):813-23. PubMed ID: 21699974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of Flavan-3-ol Species in Peanut Testa by Mass Spectrometry Imaging.
    Enomoto H; Nirasawa T
    Molecules; 2020 May; 25(10):. PubMed ID: 32443878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa.
    Neilson AP; Ferruzzi MG
    Annu Rev Food Sci Technol; 2011; 2():125-51. PubMed ID: 22129378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transepithelial permeability studies of flavan-3-ol-C-glucosides and procyanidin dimers and trimers across the Caco-2 cell monolayer.
    Hemmersbach S; Brauer SS; Hüwel S; Galla HJ; Humpf HU
    J Agric Food Chem; 2013 Aug; 61(33):7932-40. PubMed ID: 23885956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco.
    Mahajan M; Joshi R; Gulati A; Yadav SK
    Plant Biol (Stuttg); 2012 Sep; 14(5):725-33. PubMed ID: 22324650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling.
    Tarahovsky YS; Kim YA; Yagolnik EA; Muzafarov EN
    Biochim Biophys Acta; 2014 May; 1838(5):1235-46. PubMed ID: 24472512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model.
    van't Slot G; Humpf HU
    J Agric Food Chem; 2009 Sep; 57(17):8041-8. PubMed ID: 19670865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid rafts as a membrane-organizing principle.
    Lingwood D; Simons K
    Science; 2010 Jan; 327(5961):46-50. PubMed ID: 20044567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts.
    Sánchez-Patán F; Tabasco R; Monagas M; Requena T; Peláez C; Moreno-Arribas MV; Bartolomé B
    J Agric Food Chem; 2012 Jul; 60(29):7142-51. PubMed ID: 22646528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approach for the synthesis and isolation of dimeric procyanidins.
    Köhler N; Wray V; Winterhalter P
    J Agric Food Chem; 2008 Jul; 56(13):5374-85. PubMed ID: 18540617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate as chain breakers.
    Liu H; Zou T; Gao JM; Gu L
    Food Chem; 2013 Nov; 141(1):488-94. PubMed ID: 23768384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid rafts as functional heterogeneity in cell membranes.
    Lingwood D; Kaiser HJ; Levental I; Simons K
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):955-60. PubMed ID: 19754431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.