These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 25418674)
1. Structure orientation of hemin self-assembly layer determining the direct electron transfer reaction. Wang GX; Zhou Y; Wang M; Bao WJ; Wang K; Xia XH Chem Commun (Camb); 2015 Jan; 51(4):689-92. PubMed ID: 25418674 [TBL] [Abstract][Full Text] [Related]
2. In situ generation of electron acceptor for photoelectrochemical biosensing via hemin-mediated catalytic reaction. Zang Y; Lei J; Zhang L; Ju H Anal Chem; 2014 Dec; 86(24):12362-8. PubMed ID: 25393151 [TBL] [Abstract][Full Text] [Related]
3. [A non-resonance surface-enhanced Raman spectroscopic study of hemin on a roughened silver electrode]. Zheng JW; Li XW; Xu HY; Zhou YG; Gu RA Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):294-6. PubMed ID: 12961875 [TBL] [Abstract][Full Text] [Related]
4. A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires. Xie S; Chai Y; Yuan Y; Bai L; Yuan R Anal Chim Acta; 2014 Jun; 832():51-7. PubMed ID: 24890694 [TBL] [Abstract][Full Text] [Related]
5. Probing ground-state single-electron self-exchange across a molecule-metal interface. Wang Y; Sevinc PC; He Y; Lu HP J Am Chem Soc; 2011 May; 133(18):6989-96. PubMed ID: 21486067 [TBL] [Abstract][Full Text] [Related]
6. Protein electronic conductors: hemin-substrate bonding dictates transport mechanism and efficiency across myoglobin. Raichlin S; Pecht I; Sheves M; Cahen D Angew Chem Int Ed Engl; 2015 Oct; 54(42):12379-83. PubMed ID: 26346916 [TBL] [Abstract][Full Text] [Related]
7. Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin. Amdursky N; Ferber D; Pecht I; Sheves M; Cahen D Phys Chem Chem Phys; 2013 Oct; 15(40):17142-9. PubMed ID: 24008341 [TBL] [Abstract][Full Text] [Related]
8. Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site. Tsujimura S; Asahi M; Goda-Tsutsumi M; Shirai O; Kano K; Miyazaki K Phys Chem Chem Phys; 2013 Dec; 15(47):20585-9. PubMed ID: 24185896 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical incorporation of hemin in a ZnO-PPy nanocomposite on a Pt electrode as NO(x) sensor. Prakash S; Rajesh S; Singh SR; Karunakaran C; Vasu V Analyst; 2012 Dec; 137(24):5874-80. PubMed ID: 23113320 [TBL] [Abstract][Full Text] [Related]
10. An amplified electrochemical aptasensor for thrombin detection based on pseudobienzymic Fe3O4-Au nanocomposites and electroactive hemin/G-quadruplex as signal enhancers. Jing P; Xu W; Yi H; Wu Y; Bai L; Yuan R Analyst; 2014 Apr; 139(7):1756-61. PubMed ID: 24519466 [TBL] [Abstract][Full Text] [Related]
11. A novel hemin-based organic phase artificial enzyme electrode and its application in different hydrophobicity organic solvents. Ge PY; Zhao W; Du Y; Xu JJ; Chen HY Biosens Bioelectron; 2009 Mar; 24(7):2002-7. PubMed ID: 19042121 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical behavior of hemin binding with human centrin 3. Zhao Y; Chu X; Yang B Bioelectrochemistry; 2017 Oct; 117():15-22. PubMed ID: 28499167 [TBL] [Abstract][Full Text] [Related]
13. Hemin interaction with bare and 4,4'-thio-bis-benzene-thiolate covered n-GaAs (110) electrodes. Preda L; Negrila C; Lazarescu MF; Anastasescu M; Dobrescu G; Santos E; Lazarescu V Phys Chem Chem Phys; 2011 Oct; 13(38):17104-14. PubMed ID: 21869970 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion-graphene biosensor. Ni Y; Wang P; Song H; Lin X; Kokot S Anal Chim Acta; 2014 Apr; 821():34-40. PubMed ID: 24703211 [TBL] [Abstract][Full Text] [Related]
15. Polymerized hemin as an electrocatalytic platform for peroxynitrite's oxidation and detection. Peteu SF; Bose T; Bayachou M Anal Chim Acta; 2013 May; 780():81-8. PubMed ID: 23680554 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the electron transfer of a ferrocene redox probe and a histidine-tagged hemoprotein specifically bound to a nitrilotriacetic-terminated self-assembled monolayer. Balland V; Lecomte S; Limoges B Langmuir; 2009 Jun; 25(11):6532-42. PubMed ID: 19419181 [TBL] [Abstract][Full Text] [Related]
17. Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Yuan Y; Gao M; Liu G; Chai Y; Wei S; Yuan R Anal Chim Acta; 2014 Feb; 811():23-8. PubMed ID: 24456590 [TBL] [Abstract][Full Text] [Related]
18. A pseudo triple-enzyme electrochemical aptasensor based on the amplification of Pt-Pd nanowires and hemin/G-quadruplex. Zheng Y; Chai Y; Yuan Y; Yuan R Anal Chim Acta; 2014 Jun; 834():45-50. PubMed ID: 24928244 [TBL] [Abstract][Full Text] [Related]
19. Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection. Jiang X; Chai Y; Wang H; Yuan R Biosens Bioelectron; 2014 Apr; 54():20-6. PubMed ID: 24240164 [TBL] [Abstract][Full Text] [Related]
20. Assignment of heme resonances and determination of the electronic structures of high- and low-spin nitrophorin 2 by 1H and 13C NMR spectroscopy: an explanation of the order of heme methyl resonances in high-spin ferriheme proteins. Shokhireva TKh; Shokhirev NV; Walker FA Biochemistry; 2003 Jan; 42(3):679-93. PubMed ID: 12534280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]