BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 2541879)

  • 1. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria.
    Zillig W; Klenk HP; Palm P; Pühler G; Gropp F; Garrett RA; Leffers H
    Can J Microbiol; 1989 Jan; 35(1):73-80. PubMed ID: 2541879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome.
    Pühler G; Leffers H; Gropp F; Palm P; Klenk HP; Lottspeich F; Garrett RA; Zillig W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4569-73. PubMed ID: 2499884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of RNA polymerases and branching patterns of the three major groups of Archaebacteria.
    Iwabe N; Kuma K; Kishino H; Hasegawa M; Miyata T
    J Mol Evol; 1991 Jan; 32(1):70-8. PubMed ID: 1901370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence comparison of glyceraldehyde-3-phosphate dehydrogenases from the three urkingdoms: evolutionary implication.
    Hensel R; Zwickl P; Fabry S; Lang J; Palm P
    Can J Microbiol; 1989 Jan; 35(1):81-5. PubMed ID: 2497945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and evolution of the L11, L1, L10, and L12 equivalent ribosomal proteins in eubacteria, archaebacteria, and eucaryotes.
    Ramirez C; Shimmin LC; Newton CH; Matheson AT; Dennis PP
    Can J Microbiol; 1989 Jan; 35(1):234-44. PubMed ID: 2497941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae.
    Leffers H; Gropp F; Lottspeich F; Zillig W; Garrett RA
    J Mol Biol; 1989 Mar; 206(1):1-17. PubMed ID: 2495365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life.
    Benachenhou-Lahfa N; Forterre P; Labedan B
    J Mol Evol; 1993 Apr; 36(4):335-46. PubMed ID: 8315654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early evolution of eukaryotic DNA-dependent RNA polymerases.
    Kwapisz M; Beckouët F; Thuriaux P
    Trends Genet; 2008 May; 24(5):211-5. PubMed ID: 18384908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis of the RNA polymerases of Trypanosoma brucei, with special reference to class-specific transcription.
    Jess W; Palm P; Evers R; Köck J; Cornelissen AW
    Curr Genet; 1990 Dec; 18(6):547-51. PubMed ID: 2076555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and nucleotide sequence of the genes encoding the large subunits A, B and C of the DNA-dependent RNA polymerase of the archaebacterium Sulfolobus acidocaldarius.
    Pühler G; Lottspeich F; Zillig W
    Nucleic Acids Res; 1989 Jun; 17(12):4517-34. PubMed ID: 2501756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of gene expression in archaebacteria.
    Zillig W; Palm P; Reiter WD; Gropp F; Pühler G; Klenk HP
    Eur J Biochem; 1988 May; 173(3):473-82. PubMed ID: 3131139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes.
    Gupta RS; Golding GB
    J Mol Evol; 1993 Dec; 37(6):573-82. PubMed ID: 8114110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaebacterial malate dehydrogenase: the amino-terminal sequence of the enzyme from Sulfolobus acidocaldarius is homologous to the eubacterial and eukaryotic malate dehydrogenases.
    Görisch H; Jany KD
    FEBS Lett; 1989 Apr; 247(2):259-62. PubMed ID: 2497031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus.
    Gupta RS; Singh B
    Curr Biol; 1994 Dec; 4(12):1104-14. PubMed ID: 7704574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type.
    Huet J; Schnabel R; Sentenac A; Zillig W
    EMBO J; 1983; 2(8):1291-4. PubMed ID: 10872322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase.
    Severinov K; Mustaev A; Kukarin A; Muzzin O; Bass I; Darst SA; Goldfarb A
    J Biol Chem; 1996 Nov; 271(44):27969-74. PubMed ID: 8910400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes.
    Iwabe N; Kuma K; Hasegawa M; Osawa S; Miyata T
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9355-9. PubMed ID: 2531898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes.
    Gogarten JP; Kibak H; Dittrich P; Taiz L; Bowman EJ; Bowman BJ; Manolson MF; Poole RJ; Date T; Oshima T; Konishi J; Denda K; Yoshida M
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6661-5. PubMed ID: 2528146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brief note concerning archaebacterial phylogeny.
    Olsen GJ; Woese CR
    Can J Microbiol; 1989 Jan; 35(1):119-23. PubMed ID: 2497936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.