BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2541879)

  • 21. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Jan; 52(Pt 1):7-76. PubMed ID: 11837318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
    Brown JR; Doolittle WF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.
    Tahirov TH; Makarova KS; Rogozin IB; Pavlov YI; Koonin EV
    Biol Direct; 2009 Mar; 4():11. PubMed ID: 19296856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA polymerase subunit homology among cyanobacteria, other eubacteria and archaebacteria.
    Schneider GJ; Hasekorn R
    J Bacteriol; 1988 Sep; 170(9):4136-40. PubMed ID: 3137214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence alignment and evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins from archaebacteria, eubacteria, and eucaryotes.
    Shimmin LC; Ramirez C; Matheson AT; Dennis PP
    J Mol Evol; 1989 Nov; 29(5):448-62. PubMed ID: 2515294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria.
    Gogarten JP; Rausch T; Bernasconi P; Kibak H; Taiz L
    Z Naturforsch C J Biosci; 1989; 44(7-8):641-50. PubMed ID: 2528356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents.
    Berghöfer B; Kröckel L; Körtner C; Truss M; Schallenberg J; Klein A
    Nucleic Acids Res; 1988 Aug; 16(16):8113-28. PubMed ID: 2843811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Component H of the DNA-dependent RNA polymerases of Archaea is homologous to a subunit shared by the three eucaryal nuclear RNA polymerases.
    Klenk HP; Palm P; Lottspeich F; Zillig W
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):407-10. PubMed ID: 1729711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life.
    Sidow A; Wilson AC
    J Mol Evol; 1990 Jul; 31(1):51-68. PubMed ID: 2116531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.
    Cotton JA; McInerney JO
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17252-5. PubMed ID: 20852068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the early evolution of RNA polymerase.
    Lazcano A; Fastag J; Gariglio P; Ramírez C; Oró J
    J Mol Evol; 1988; 27(4):365-76. PubMed ID: 3146647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The origin and early evolution of nucleic acid polymerases.
    Lazcano A; Llaca V; Cappello R; Valverde V; Oró J
    Adv Space Res; 1992; 12(4):207-16. PubMed ID: 11538140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome organization and transcription in archaebacteria.
    Schnabel H; Schnabel R; Yeats S; Tu J; Gierl A; Neumann H; Zillig W
    Folia Biol (Praha); 1984; 30 Spec No():2-6. PubMed ID: 6202564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain.
    Cammarano P; Palm P; Creti R; Ceccarelli E; Sanangelantoni AM; Tiboni O
    J Mol Evol; 1992 May; 34(5):396-405. PubMed ID: 1602493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Archaebacteria and phylogeny of organisms].
    Kandler O
    Naturwissenschaften; 1981 Apr; 68(4):183-92. PubMed ID: 6168919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and nucleotide sequence of an archaebacterial glutamine synthetase gene: phylogenetic implications.
    Sanangelantoni AM; Barbarini D; Di Pasquale G; Cammarano P; Tiboni O
    Mol Gen Genet; 1990 Apr; 221(2):187-94. PubMed ID: 1973523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of genes encoding the L11, L1, L10, and L12 equivalent ribosomal proteins in eubacteria, archaebacteria, and eucaryotes.
    Shimmin LC; Newton CH; Ramirez C; Yee J; Downing WL; Louie A; Matheson AT; Dennis PP
    Can J Microbiol; 1989 Jan; 35(1):164-70. PubMed ID: 2497939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences.
    Liao D; Dennis PP
    J Mol Evol; 1994 Apr; 38(4):405-19. PubMed ID: 8007008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications.
    Olsen GJ; Pace NR; Nuell M; Kaine BP; Gupta R; Woese CR
    J Mol Evol; 1985; 22(4):301-7. PubMed ID: 3936935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene.
    Gupta RS; Singh B
    J Bacteriol; 1992 Jul; 174(14):4594-605. PubMed ID: 1624448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.