BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2541879)

  • 41. DNA-dependent RNA polymerase of thermoacidophilic archaebacteria.
    Prangishvilli D; Zillig W; Gierl A; Biesert L; Holz I
    Eur J Biochem; 1982 Mar; 122(3):471-7. PubMed ID: 6800790
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits.
    Ihara K; Mukohata Y
    Arch Biochem Biophys; 1991 Apr; 286(1):111-6. PubMed ID: 1832829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular phylogenetics of DNA 5mC-methyltransferases.
    Bujnicki JM; Radlinska M
    Acta Microbiol Pol; 1999; 48(1):19-30. PubMed ID: 10467693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and sequence of genes encoding subunits of eukaryotic RNA polymerases.
    Cornelissen AW; Evers R; Köck J
    Oxf Surv Eukaryot Genes; 1988; 5():91-131. PubMed ID: 2472153
    [No Abstract]   [Full Text] [Related]  

  • 45. Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters.
    Reiter WD; Palm P; Zillig W
    Nucleic Acids Res; 1988 Jan; 16(1):1-19. PubMed ID: 2829113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Supertrees disentangle the chimerical origin of eukaryotic genomes.
    Pisani D; Cotton JA; McInerney JO
    Mol Biol Evol; 2007 Aug; 24(8):1752-60. PubMed ID: 17504772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain.
    Klenk HP; Zillig W
    J Mol Evol; 1994 Apr; 38(4):420-32. PubMed ID: 8007009
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on DNA polymerases and topoisomerases in archaebacteria.
    Forterre P; Elie C; Sioud M; Hamal A
    Can J Microbiol; 1989 Jan; 35(1):228-33. PubMed ID: 2541877
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein-based phylogenies support a chimeric origin for the eukaryotic genome.
    Golding GB; Gupta RS
    Mol Biol Evol; 1995 Jan; 12(1):1-6. PubMed ID: 7877484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular evolution of multisubunit RNA polymerases: sequence analysis.
    Lane WJ; Darst SA
    J Mol Biol; 2010 Jan; 395(4):671-85. PubMed ID: 19895820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutamine synthetase gene evolution in bacteria.
    Pesole G; Gissi C; Lanave C; Saccone C
    Mol Biol Evol; 1995 Mar; 12(2):189-97. PubMed ID: 7700148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria).
    Cavalier-Smith T; Chao EE
    Protoplasma; 2020 May; 257(3):621-753. PubMed ID: 31900730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Archaebacteria and the origin of the eukaryotic cytoplasm.
    Zillig W; Schnabel R; Stetter KO
    Curr Top Microbiol Immunol; 1985; 114():1-18. PubMed ID: 3922682
    [No Abstract]   [Full Text] [Related]  

  • 54. Evolutionary relationships amongst archaebacteria. A comparative study of 23 S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen.
    Leffers H; Kjems J; Ostergaard L; Larsen N; Garrett RA
    J Mol Biol; 1987 May; 195(1):43-61. PubMed ID: 3116261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer.
    Iyer LM; Koonin EV; Aravind L
    Gene; 2004 Jun; 335():73-88. PubMed ID: 15194191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A genomic timescale for the origin of eukaryotes.
    Hedges SB; Chen H; Kumar S; Wang DY; Thompson AS; Watanabe H
    BMC Evol Biol; 2001; 1():4. PubMed ID: 11580860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree.
    Gouy M; Li WH
    Nature; 1989 May; 339(6220):145-7. PubMed ID: 2497353
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization.
    Tucker SL; Reece J; Ream TS; Pikaard CS
    Cold Spring Harb Symp Quant Biol; 2010; 75():285-97. PubMed ID: 21447813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases.
    Decker KB; Hinton DM
    Annu Rev Microbiol; 2013; 67():113-39. PubMed ID: 23768203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage.
    Cermakian N; Ikeda TM; Cedergren R; Gray MW
    Nucleic Acids Res; 1996 Feb; 24(4):648-54. PubMed ID: 8604305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.