These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2541879)

  • 61. Prokaryotes and archaebacteria are not monophyletic: rate invariant analysis of rRNA genes indicates that eukaryotes and eocytes form a monophyletic taxon.
    Lake JA
    Cold Spring Harb Symp Quant Biol; 1987; 52():839-46. PubMed ID: 3454292
    [No Abstract]   [Full Text] [Related]  

  • 62. Similarity relations of DNA and RNA polymerases investigated by the principal component analysis of amino acid sequences.
    Otsuka J; Kikuchi N; Kojima S
    Biochim Biophys Acta; 1999 Oct; 1434(2):221-47. PubMed ID: 10525143
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Life's third domain (Archaea): an established fact or an endangered paradigm?
    Gupta RS
    Theor Popul Biol; 1998 Oct; 54(2):91-104. PubMed ID: 9733652
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes.
    Esser C; Ahmadinejad N; Wiegand C; Rotte C; Sebastiani F; Gelius-Dietrich G; Henze K; Kretschmann E; Richly E; Leister D; Bryant D; Steel MA; Lockhart PJ; Penny D; Martin W
    Mol Biol Evol; 2004 Sep; 21(9):1643-60. PubMed ID: 15155797
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Archaebacterial genomes: eubacterial form and eukaryotic content.
    Keeling PJ; Charlebois RL; Doolittle WF
    Curr Opin Genet Dev; 1994 Dec; 4(6):816-22. PubMed ID: 7888750
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution.
    Achenbach-Richter L; Gupta R; Zillig W; Woese CR
    Syst Appl Microbiol; 1988; 10():231-40. PubMed ID: 11542150
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Conserved gene structures and expression signals in methanogenic archaebacteria.
    Allmansberger R; Bokranz M; Kröckel L; Schallenberg J; Klein A
    Can J Microbiol; 1989 Jan; 35(1):52-7. PubMed ID: 2497943
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The structure and evolution of archaebacterial ribosomal RNAs.
    Wolters J; Erdmann VA
    Can J Microbiol; 1989 Jan; 35(1):43-51. PubMed ID: 2470487
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A ribosomal protein that is immunologically conserved in archaebacteria, eubacteria and eukaryotes.
    Schmid G; Strobel O; Stöffler-Meilicke M; Stöffler G; Böck A
    FEBS Lett; 1984 Nov; 177(2):189-94. PubMed ID: 6209167
    [TBL] [Abstract][Full Text] [Related]  

  • 70. RNA polymerases and transcription in archaebacteria.
    Zillig W; Palm P; Langer D; Klenk HP; Lanzendörfer M; Hüdepohl U; Hain J
    Biochem Soc Symp; 1992; 58():79-88. PubMed ID: 1445413
    [No Abstract]   [Full Text] [Related]  

  • 71. Simple repetitive sequences in the genomes of archaebacteria.
    Vashakidze RP; Prangishvili DA
    FEBS Lett; 1987 Jun; 216(2):217-20. PubMed ID: 2438164
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cloning and physical mapping of RNA polymerase genes from Methanobacterium thermoautotrophicum and comparison of homologies and gene orders with those of RNA polymerase genes from other methanogenic archaebacteria.
    Schallenberg J; Moes M; Truss M; Reiser W; Thomm M; Stetter KO; Klein A
    J Bacteriol; 1988 May; 170(5):2247-53. PubMed ID: 2834336
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin.
    Keeling PJ; Doolittle WF
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1270-5. PubMed ID: 9037042
    [TBL] [Abstract][Full Text] [Related]  

  • 74. HSP70 phylogeny and the relationship between archaebacteria, eubacteria, and eukaryotes.
    Gupta RS; Golding GB; Singh B
    J Mol Evol; 1994 Nov; 39(5):537-40. PubMed ID: 7807543
    [No Abstract]   [Full Text] [Related]  

  • 75. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.
    Baumann P; Jackson SP
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6726-30. PubMed ID: 8692886
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transcription in archaea: similarity to that in eucarya.
    Langer D; Hain J; Thuriaux P; Zillig W
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5768-72. PubMed ID: 7597027
    [TBL] [Abstract][Full Text] [Related]  

  • 77. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms.
    Gupta RS
    Mol Microbiol; 1998 Aug; 29(3):695-707. PubMed ID: 9723910
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes.
    Gupta RS
    Antonie Van Leeuwenhoek; 1997 Jul; 72(1):49-61. PubMed ID: 9296263
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes.
    Lake JA; Henderson E; Oakes M; Clark MW
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3786-90. PubMed ID: 6587394
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.
    Gupta RS
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1435-91. PubMed ID: 9841678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.