These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 25418947)
1. The molecular interaction of a protein in highly concentrated solution investigated by Raman spectroscopy. Ota C; Noguchi S; Tsumoto K Biopolymers; 2015 Apr; 103(4):237-46. PubMed ID: 25418947 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the Protein-Protein Interactions in a Highly Concentrated Antibody Solution by Using Raman Spectroscopy. Ota C; Noguchi S; Nagatoishi S; Tsumoto K Pharm Res; 2016 Apr; 33(4):956-69. PubMed ID: 26677115 [TBL] [Abstract][Full Text] [Related]
3. Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4-, Cl-, Br-, and NO3-). Rudolph WW; Irmer G Dalton Trans; 2013 Mar; 42(11):3919-35. PubMed ID: 23334569 [TBL] [Abstract][Full Text] [Related]
4. UV near-resonance Raman spectroscopic study of 1,1'-bi-2-naphthol solutions. Li ZY; Chen DM; He TJ; Liu FC J Phys Chem A; 2007 Jun; 111(22):4767-75. PubMed ID: 17500545 [TBL] [Abstract][Full Text] [Related]
5. Infrared and Raman bands of phytantriol as markers of hydrogen bonding and interchain interaction. Misiūnas A; Niaura G; Talaikyte Z; Eicher-Lorka O; Razumas V Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):945-57. PubMed ID: 15961342 [TBL] [Abstract][Full Text] [Related]
6. [The investigation for lysozyme conformation changes in deuteromethanol solution by FT-Raman spectrometer]. Wang B; Wang J; Yu J; Liu H Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Aug; 19(4):535-7. PubMed ID: 15818948 [TBL] [Abstract][Full Text] [Related]
7. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra. Kinalwa MN; Blanch EW; Doig AJ Anal Chem; 2010 Aug; 82(15):6347-9. PubMed ID: 20669990 [TBL] [Abstract][Full Text] [Related]
8. Raman spectroscopic study of hydrogen bonding in benzenesulfonic acid/acrylonitrile solutions. Alía JM; Edwards HG; Kiernan BM Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2939-45. PubMed ID: 16165035 [TBL] [Abstract][Full Text] [Related]
9. Understanding the signatures of secondary-structure elements in proteins with Raman optical activity spectroscopy. Jacob CR; Luber S; Reiher M Chemistry; 2009 Dec; 15(48):13491-508. PubMed ID: 19908265 [TBL] [Abstract][Full Text] [Related]
10. Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy. Sipos P; May PM; Hefter G Dalton Trans; 2006 Jan; (2):368-75. PubMed ID: 16365651 [TBL] [Abstract][Full Text] [Related]
11. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions. Webster GT; McNaughton D; Wood BR J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroscopic study of the mineral arsenogorceixite BaAl₃AsO₃(OH)(AsO₄,PO₄)(OH,F)₆. Frost RL; Xi Y; Pogson RE Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():301-6. PubMed ID: 22387680 [TBL] [Abstract][Full Text] [Related]
13. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O). Frost RL; Scholz R; López A; Xi Y Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():243-8. PubMed ID: 24491665 [TBL] [Abstract][Full Text] [Related]
14. Raman spectroscopy of secondary structure of elastinlike polymer poly(GVGVP). Schmidt P; Dybal J; Rodríguez-Cabello JC; Alonso M Biopolymers; 2001; 62(3):150-7. PubMed ID: 11343284 [TBL] [Abstract][Full Text] [Related]
15. FT-Raman spectroscopic analysis of the most probable structures in aluminum chloride and tetrahydrofuran solutions. Alves CC; Campos TB; Alves WA Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1085-8. PubMed ID: 22925986 [TBL] [Abstract][Full Text] [Related]
16. Elucidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy. Howell NK; Herman H; Li-Chan EC J Agric Food Chem; 2001 Mar; 49(3):1529-33. PubMed ID: 11312891 [TBL] [Abstract][Full Text] [Related]
17. The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study. Frost RL; López A; Scholz R; Xi Y; Lana C Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():408-12. PubMed ID: 24682056 [TBL] [Abstract][Full Text] [Related]
18. UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin. Chi Z; Asher SA Biochemistry; 1998 Mar; 37(9):2865-72. PubMed ID: 9485437 [TBL] [Abstract][Full Text] [Related]
19. The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O--a Raman spectroscopic study. Frost RL; Keeffe EC Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):111-6. PubMed ID: 21733746 [TBL] [Abstract][Full Text] [Related]
20. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite. Frost RL; López A; Xi Y; Cardoso LH; Scholz R Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]