BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25418965)

  • 1. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics--current state-of-the-art and challenges.
    Melo-Braga MN; Meyer M; Zeng X; Larsen MR
    Proteomics; 2015 Feb; 15(4):656-74. PubMed ID: 25418965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing disease-associated changes in post-translational modifications by mass spectrometry.
    Thygesen C; Boll I; Finsen B; Modzel M; Larsen MR
    Expert Rev Proteomics; 2018 Mar; 15(3):245-258. PubMed ID: 29376447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein post-translational modifications and regulation of pluripotency in human stem cells.
    Wang YC; Peterson SE; Loring JF
    Cell Res; 2014 Feb; 24(2):143-60. PubMed ID: 24217768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells.
    Muñoz J; Heck AJ
    Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems-wide proteomic characterization of combinatorial post-translational modification patterns.
    Young NL; Plazas-Mayorca MD; Garcia BA
    Expert Rev Proteomics; 2010 Feb; 7(1):79-92. PubMed ID: 20121478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational quantitation by SRM/MRM: applications in cardiology.
    Gianazza E; Banfi C
    Expert Rev Proteomics; 2018 Jun; 15(6):477-502. PubMed ID: 29865883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a human pluripotent stem cell-derived model of neuronal development using multiplexed targeted proteomics.
    Dunkley T; Costa V; Friedlein A; Lugert S; Aigner S; Ebeling M; Miller MT; Patsch C; Piraino P; Cutler P; Jagasia R
    Proteomics Clin Appl; 2015 Aug; 9(7-8):684-94. PubMed ID: 25684324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The requirement for proteomics to unravel stem cell regulatory mechanisms.
    Williamson AJ; Whetton AD
    J Cell Physiol; 2011 Oct; 226(10):2478-83. PubMed ID: 21792904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic stem cell proteomics.
    Van Hoof D; Mummery CL; Heck AJ; Krijgsveld J
    Expert Rev Proteomics; 2006 Aug; 3(4):427-37. PubMed ID: 16901201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical advances in proteomics mass spectrometry: identification of post-translational modifications.
    Amoresano A; Carpentieri A; Giangrande C; Palmese A; Chiappetta G; Marino G; Pucci P
    Clin Chem Lab Med; 2009; 47(6):647-65. PubMed ID: 19426139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of post translational modifications in cyanobacteria.
    Xiong Q; Chen Z; Ge F
    J Proteomics; 2016 Feb; 134():57-64. PubMed ID: 26254007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical proteomics approaches to examine novel histone posttranslational modifications.
    Li X; Li XD
    Curr Opin Chem Biol; 2015 Feb; 24():80-90. PubMed ID: 25461726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells.
    Dai B; Rasmussen TP
    Stem Cells; 2007 Oct; 25(10):2567-74. PubMed ID: 17641388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining pluripotent stem cells through quantitative proteomic analysis.
    Reiland S; Salekdeh GH; Krijgsveld J
    Expert Rev Proteomics; 2011 Feb; 8(1):29-42. PubMed ID: 21329426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain.
    Tweedie-Cullen RY; Reck JM; Mansuy IM
    J Proteome Res; 2009 Nov; 8(11):4966-82. PubMed ID: 19737024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Stem Cells (NSCs) and Proteomics.
    Shoemaker LD; Kornblum HI
    Mol Cell Proteomics; 2016 Feb; 15(2):344-54. PubMed ID: 26494823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.
    Sun B
    Proteomics; 2015 Mar; 15(5-6):1152-63. PubMed ID: 25211708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and quantification of protein posttranslational modifications.
    Farley AR; Link AJ
    Methods Enzymol; 2009; 463():725-63. PubMed ID: 19892200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.