BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25419585)

  • 1. Modelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations.
    Meffin H; Tahayori B; Sergeev EN; Mareels IM; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):065004. PubMed ID: 25419585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling extracellular electrical stimulation: part 4. Effect of the cellular composition of neural tissue on its spatio-temporal filtering properties.
    Tahayori B; Meffin H; Sergeev EN; Mareels IM; Burkitt AN; Grayden DB
    J Neural Eng; 2014 Dec; 11(6):065005. PubMed ID: 25419652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.
    Meffin H; Tahayori B; Grayden DB; Burkitt AN
    J Neural Eng; 2012 Dec; 9(6):065005. PubMed ID: 23187045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling extracellular electrical stimulation: II. Computational validation and numerical results.
    Tahayori B; Meffin H; Dokos S; Burkitt AN; Grayden DB
    J Neural Eng; 2012 Dec; 9(6):065006. PubMed ID: 23187093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal inconsistencies in models of electrical stimulation in neural tissue.
    Meffin H; Tahayori B; Grayden DB; Burkitt AN
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5946-9. PubMed ID: 24111093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation of neural tissue modeled as a cellular composite: point source electrode in an isotropic tissue.
    Monfared O; Nešíć D; Freestone DR; Grayden DB; Tahayori B; Meffin H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4856-9. PubMed ID: 25571079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane current from transmembrane potentials in complex core-conductor models.
    Barr RC; Plonsey R; Johnson CR
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):405-11. PubMed ID: 12723051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the electrical impedance of neural tissue from its microscopic cellular constituents.
    Monfared O; Tahayori B; Freestone D; Nešić D; Grayden DB; Meffin H
    J Neural Eng; 2020 Jan; 17(1):016037. PubMed ID: 31711052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalized cable equation for magnetic stimulation of axons.
    Nagarajan SS; Durand DM
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):304-12. PubMed ID: 8682543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.
    Eiber CD; Dokos S; Lovell NH; Suaning GJ
    Med Biol Eng Comput; 2017 May; 55(5):823-831. PubMed ID: 27541303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications.
    Joucla S; Yvert B
    J Physiol Paris; 2012; 106(3-4):146-58. PubMed ID: 22036892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry.
    Clark JW; Greco EC; Harman TL
    CRC Crit Rev Bioeng; 1978 Nov; 3(1):1-22. PubMed ID: 310379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the cable model for electrical stimulation of unmyelinated nerve fibers.
    Schnabel V; Struijk JJ
    IEEE Trans Biomed Eng; 2001 Sep; 48(9):1027-33. PubMed ID: 11534838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.
    Wang B; Aberra AS; Grill WM; Peterchev AV
    J Neural Eng; 2018 Apr; 15(2):026003. PubMed ID: 29363622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.
    Rubinstein JT; Spelman FA
    Biophys J; 1988 Dec; 54(6):975-81. PubMed ID: 3233274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular potentials of myelinated and demyelinated human motor nerve fibres.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2003 Dec; 43(8):497-501. PubMed ID: 14717030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular currents and potentials of the active myelinated nerve fiber.
    Ganapathy N; Clark JW
    Biophys J; 1987 Nov; 52(5):749-61. PubMed ID: 3427184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation.
    Trayanova NA; Roth BJ; Malden LJ
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive membrane potentials: a generalization of the theory of electrotonus.
    Hellerstein D
    Biophys J; 1968 Mar; 8(3):358-79. PubMed ID: 5759920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of the extracellular fields produced by activated neural structures.
    Richerson S; Ingram M; Perry D; Stecker MM
    Biomed Eng Online; 2005 Sep; 4():53. PubMed ID: 16146569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.