These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25419639)

  • 21. Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries.
    Wu HB; Lou XW; Hng HH
    Chemistry; 2012 Feb; 18(7):2094-9. PubMed ID: 22246679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-LFP-multi-walled carbon nanotubes composite cathode materials synthesized by solid-state reaction for lithium ion batteries.
    Hwang YH; Prabakar SJ; Pyo M
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5440-4. PubMed ID: 23882776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A self-supported peapod-like mesoporous TiO2-C array with excellent anode performance in lithium-ion batteries.
    Peng L; Zhang H; Bai Y; Zhang Y; Wang Y
    Nanoscale; 2015 May; 7(19):8758-65. PubMed ID: 25905728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of TiO
    Luo W; Blanchard J; Tonelli D; Taleb A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries.
    Zhang Y; Fu Q; Xu Q; Yan X; Zhang R; Guo Z; Du F; Wei Y; Zhang D; Chen G
    Nanoscale; 2015 Jul; 7(28):12215-24. PubMed ID: 26132786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical Nanotube-Constructed Porous TiO2-B Spheres for High Performance Lithium Ion Batteries.
    Cai Y; Wang HE; -Zhuan Huang S; Jin J; Wang C; Yu Y; Li Y; Su BL
    Sci Rep; 2015 Jul; 5():11557. PubMed ID: 26170081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries.
    Hao B; Yan Y; Wang X; Chen G
    Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries.
    Moitzheim S; Nimisha CS; Deng S; Cott DJ; Detavernier C; Vereecken PM
    Nanotechnology; 2014 Dec; 25(50):504008. PubMed ID: 25431990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries.
    Ban C; Xie M; Sun X; Travis JJ; Wang G; Sun H; Dillon AC; Lian J; George SM
    Nanotechnology; 2013 Oct; 24(42):424002. PubMed ID: 24067324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis of 3D few-layered MoS₂ coated TiO₂ nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries.
    Chen B; Zhao N; Guo L; He F; Shi C; He C; Li J; Liu E
    Nanoscale; 2015 Aug; 7(30):12895-905. PubMed ID: 26165623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism.
    Petkovich ND; Wilson BE; Rudisill SG; Stein A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocatalytic synthesis of TiO(2) and reduced graphene oxide nanocomposite for lithium ion battery.
    Qiu J; Zhang P; Ling M; Li S; Liu P; Zhao H; Zhang S
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3636-42. PubMed ID: 22738305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical architectures of TiO2 nanowires--CNT interpenetrating networks as high-rate anodes for lithium-ion batteries.
    Jin Z; Yang M; Wang G; Wang J; Luan Y; Tan L; Lu Y
    Nanotechnology; 2014 Oct; 25(39):395401. PubMed ID: 25189658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery.
    Wang YQ; Gu L; Guo YG; Li H; He XQ; Tsukimoto S; Ikuhara Y; Wan LJ
    J Am Chem Soc; 2012 May; 134(18):7874-9. PubMed ID: 22530994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries.
    Wang HG; Ma DL; Huang Y; Zhang XB
    Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.