These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 25419868)
1. Direct observation of key catalytic intermediates in a photoinduced proton reduction cycle with a diiron carbonyl complex. Mirmohades M; Pullen S; Stein M; Maji S; Ott S; Hammarström L; Lomoth R J Am Chem Soc; 2014 Dec; 136(50):17366-9. PubMed ID: 25419868 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic and theoretical investigation of the [Fe Oudsen JPH; Venderbosch B; Martin DJ; Korstanje TJ; Reek JNH; Tromp M Phys Chem Chem Phys; 2019 Jul; 21(27):14638-14645. PubMed ID: 31215568 [TBL] [Abstract][Full Text] [Related]
3. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Wang S; Aster A; Mirmohades M; Lomoth R; Hammarström L Inorg Chem; 2018 Jan; 57(2):768-776. PubMed ID: 29297686 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution. Orain C; Quentel F; Gloaguen F ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363 [TBL] [Abstract][Full Text] [Related]
5. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4. Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098 [TBL] [Abstract][Full Text] [Related]
6. Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution. Bertini L; Fantucci P; De Gioia L; Zampella G Inorg Chem; 2013 Sep; 52(17):9826-41. PubMed ID: 23952259 [TBL] [Abstract][Full Text] [Related]
7. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
8. Direct Spectroscopic Detection of Key Intermediates and the Turnover Process in Catalytic H Wang S; Pullen S; Weippert V; Liu T; Ott S; Lomoth R; Hammarström L Chemistry; 2019 Aug; 25(47):11135-11140. PubMed ID: 31210385 [TBL] [Abstract][Full Text] [Related]
9. A cobalt-dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. McNamara WR; Han Z; Alperin PJ; Brennessel WW; Holland PL; Eisenberg R J Am Chem Soc; 2011 Oct; 133(39):15368-71. PubMed ID: 21863808 [TBL] [Abstract][Full Text] [Related]
10. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media. Sugimoto H; Tano H; Miyake H; Itoh S Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143 [TBL] [Abstract][Full Text] [Related]
11. Direct probing of photoinduced electron transfer in a self-assembled biomimetic [2Fe2S]-hydrogenase complex using ultrafast vibrational spectroscopy. Li P; Amirjalayer S; Hartl F; Lutz M; de Bruin B; Becker R; Woutersen S; Reek JN Inorg Chem; 2014 May; 53(10):5373-83. PubMed ID: 24766080 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic insights into the catalysis of electrochemical proton reduction by a diiron azadithiolate complex. Bourrez M; Steinmetz R; Gloaguen F Inorg Chem; 2014 Oct; 53(19):10667-73. PubMed ID: 25219687 [TBL] [Abstract][Full Text] [Related]
13. Diferrate [Fe Fischer S; Rösel A; Kammer A; Barsch E; Schoch R; Junge H; Bauer M; Beller M; Ludwig R Chemistry; 2018 Oct; 24(60):16052-16065. PubMed ID: 30141226 [TBL] [Abstract][Full Text] [Related]
14. Diiron Complexes with Rigid and Conjugated S-to-S Bridges for Electrocatalytic Reduction of CO Cheng M; Shen S; Zhang Z; Niu K; Wang N Inorg Chem; 2024 Aug; 63(34):15599-15610. PubMed ID: 39106257 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)]. Song LC; Li CG; Ge JH; Yang ZY; Wang HT; Zhang J; Hu QM J Inorg Biochem; 2008 Nov; 102(11):1973-9. PubMed ID: 18783833 [TBL] [Abstract][Full Text] [Related]
16. Active-site models for iron hydrogenases: reduction chemistry of dinuclear iron complexes. Aguirre de Carcer I; DiPasquale A; Rheingold AL; Heinekey DM Inorg Chem; 2006 Oct; 45(20):8000-2. PubMed ID: 16999394 [TBL] [Abstract][Full Text] [Related]
17. A binuclear iron-thiolate catalyst for electrochemical hydrogen production in aqueous micellar solution. Quentel F; Passard G; Gloaguen F Chemistry; 2012 Oct; 18(42):13473-9. PubMed ID: 22968711 [TBL] [Abstract][Full Text] [Related]
18. Steps along the path to dihydrogen activation at [FeFe] hydrogenase structural models: dependence of the core geometry on electrocatalytic proton reduction. Cheah MH; Borg SJ; Best SP Inorg Chem; 2007 Mar; 46(5):1741-50. PubMed ID: 17256930 [TBL] [Abstract][Full Text] [Related]
19. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
20. Site-selective X-ray spectroscopy on an asymmetric model complex of the [FeFe] hydrogenase active site. Leidel N; Chernev P; Havelius KG; Ezzaher S; Ott S; Haumann M Inorg Chem; 2012 Apr; 51(8):4546-59. PubMed ID: 22443530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]