These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25420065)

  • 1. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality.
    Aghajan ZM; Acharya L; Moore JJ; Cushman JD; Vuong C; Mehta MR
    Nat Neurosci; 2015 Jan; 18(1):121-8. PubMed ID: 25420065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensory control of hippocampal spatiotemporal selectivity.
    Ravassard P; Kees A; Willers B; Ho D; Aharoni DA; Cushman J; Aghajan ZM; Mehta MR
    Science; 2013 Jun; 340(6138):1342-1346. PubMed ID: 23641063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal Influence of Visual Cues on Hippocampal Directional Selectivity.
    Acharya L; Aghajan ZM; Vuong C; Moore JJ; Mehta MR
    Cell; 2016 Jan; 164(1-2):197-207. PubMed ID: 26709045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial cognition in a virtual reality home-cage extension for freely moving rodents.
    Kaupert U; Thurley K; Frei K; Bagorda F; Schatz A; Tocker G; Rapoport S; Derdikman D; Winter Y
    J Neurophysiol; 2017 Apr; 117(4):1736-1748. PubMed ID: 28077665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
    Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y
    eNeuro; 2017; 4(3):. PubMed ID: 28484738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality applications for the remapping of space in neglect patients.
    Ansuini C; Pierno AC; Lusher D; Castiello U
    Restor Neurol Neurosci; 2006; 24(4-6):431-41. PubMed ID: 17119316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual boundary cues suffice to anchor place and grid cells in virtual reality.
    Yang X; Cacucci F; Burgess N; Wills TJ; Chen G
    Curr Biol; 2024 May; 34(10):2256-2264.e3. PubMed ID: 38701787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hippocampal code for space in Mongolian gerbils.
    Mankin EA; Thurley K; Chenani A; Haas OV; Debs L; Henke J; Galinato M; Leutgeb JK; Leutgeb S; Leibold C
    Hippocampus; 2019 Sep; 29(9):787-801. PubMed ID: 30746805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior.
    Faraji J; Lehmann H; Metz GA; Sutherland RJ
    Behav Brain Res; 2008 May; 189(1):17-31. PubMed ID: 18192033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of virtual reality on postural stability during movements of quiet stance.
    Horlings CG; Carpenter MG; Küng UM; Honegger F; Wiederhold B; Allum JH
    Neurosci Lett; 2009 Feb; 451(3):227-31. PubMed ID: 19146921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of post-stroke extrapersonal neglect using a three-dimensional immersive virtual street crossing program.
    Kim DY; Ku J; Chang WH; Park TH; Lim JY; Han K; Kim IY; Kim SI
    Acta Neurol Scand; 2010 Mar; 121(3):171-7. PubMed ID: 19839943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Place-related neural responses in the monkey hippocampal formation in a virtual space.
    Hori E; Nishio Y; Kazui K; Umeno K; Tabuchi E; Sasaki K; Endo S; Ono T; Nishijo H
    Hippocampus; 2005; 15(8):991-6. PubMed ID: 16108028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.
    Grewe P; Lahr D; Kohsik A; Dyck E; Markowitsch HJ; Bien CG; Botsch M; Piefke M
    Epilepsy Behav; 2014 Feb; 31():57-66. PubMed ID: 24361763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment.
    Weniger G; Ruhleder M; Lange C; Wolf S; Irle E
    Neuropsychologia; 2011 Feb; 49(3):518-27. PubMed ID: 21185847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional spatial selectivity of hippocampal neurons during space flight.
    Knierim JJ; McNaughton BL; Poe GR
    Nat Neurosci; 2000 Mar; 3(3):209-10. PubMed ID: 10700250
    [No Abstract]   [Full Text] [Related]  

  • 17. A platform for combining virtual reality experiments with functional magnetic resonance imaging.
    Mraz R; Hong J; Quintin G; Staines WR; McIlroy WE; Zakzanis KK; Graham SJ
    Cyberpsychol Behav; 2003 Aug; 6(4):359-68. PubMed ID: 14511447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular dynamics of hippocampal place cells during virtual navigation.
    Harvey CD; Collman F; Dombeck DA; Tank DW
    Nature; 2009 Oct; 461(7266):941-6. PubMed ID: 19829374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of spatial processing in virtual reality using functional magnetic resonance imaging (FMRI).
    Beck L; Wolter M; Mungard NF; Vohn R; Staedtgen M; Kuhlen T; Sturm W
    Cyberpsychol Behav Soc Netw; 2010 Apr; 13(2):211-5. PubMed ID: 20528281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial decisions in rats based on the geometry of computer-generated patterns.
    Nekovarova T; Bures J
    Neurosci Lett; 2006 Feb; 394(3):211-5. PubMed ID: 16289319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.