These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality. Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y eNeuro; 2017; 4(3):. PubMed ID: 28484738 [TBL] [Abstract][Full Text] [Related]
7. Virtual reality applications for the remapping of space in neglect patients. Ansuini C; Pierno AC; Lusher D; Castiello U Restor Neurol Neurosci; 2006; 24(4-6):431-41. PubMed ID: 17119316 [TBL] [Abstract][Full Text] [Related]
8. Visual boundary cues suffice to anchor place and grid cells in virtual reality. Yang X; Cacucci F; Burgess N; Wills TJ; Chen G Curr Biol; 2024 May; 34(10):2256-2264.e3. PubMed ID: 38701787 [TBL] [Abstract][Full Text] [Related]
9. The hippocampal code for space in Mongolian gerbils. Mankin EA; Thurley K; Chenani A; Haas OV; Debs L; Henke J; Galinato M; Leutgeb JK; Leutgeb S; Leibold C Hippocampus; 2019 Sep; 29(9):787-801. PubMed ID: 30746805 [TBL] [Abstract][Full Text] [Related]
10. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior. Faraji J; Lehmann H; Metz GA; Sutherland RJ Behav Brain Res; 2008 May; 189(1):17-31. PubMed ID: 18192033 [TBL] [Abstract][Full Text] [Related]
11. Influence of virtual reality on postural stability during movements of quiet stance. Horlings CG; Carpenter MG; Küng UM; Honegger F; Wiederhold B; Allum JH Neurosci Lett; 2009 Feb; 451(3):227-31. PubMed ID: 19146921 [TBL] [Abstract][Full Text] [Related]
12. Assessment of post-stroke extrapersonal neglect using a three-dimensional immersive virtual street crossing program. Kim DY; Ku J; Chang WH; Park TH; Lim JY; Han K; Kim IY; Kim SI Acta Neurol Scand; 2010 Mar; 121(3):171-7. PubMed ID: 19839943 [TBL] [Abstract][Full Text] [Related]
13. Place-related neural responses in the monkey hippocampal formation in a virtual space. Hori E; Nishio Y; Kazui K; Umeno K; Tabuchi E; Sasaki K; Endo S; Ono T; Nishijo H Hippocampus; 2005; 15(8):991-6. PubMed ID: 16108028 [TBL] [Abstract][Full Text] [Related]
14. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task. Grewe P; Lahr D; Kohsik A; Dyck E; Markowitsch HJ; Bien CG; Botsch M; Piefke M Epilepsy Behav; 2014 Feb; 31():57-66. PubMed ID: 24361763 [TBL] [Abstract][Full Text] [Related]
15. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Weniger G; Ruhleder M; Lange C; Wolf S; Irle E Neuropsychologia; 2011 Feb; 49(3):518-27. PubMed ID: 21185847 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional spatial selectivity of hippocampal neurons during space flight. Knierim JJ; McNaughton BL; Poe GR Nat Neurosci; 2000 Mar; 3(3):209-10. PubMed ID: 10700250 [No Abstract] [Full Text] [Related]
17. A platform for combining virtual reality experiments with functional magnetic resonance imaging. Mraz R; Hong J; Quintin G; Staines WR; McIlroy WE; Zakzanis KK; Graham SJ Cyberpsychol Behav; 2003 Aug; 6(4):359-68. PubMed ID: 14511447 [TBL] [Abstract][Full Text] [Related]
18. Intracellular dynamics of hippocampal place cells during virtual navigation. Harvey CD; Collman F; Dombeck DA; Tank DW Nature; 2009 Oct; 461(7266):941-6. PubMed ID: 19829374 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of spatial processing in virtual reality using functional magnetic resonance imaging (FMRI). Beck L; Wolter M; Mungard NF; Vohn R; Staedtgen M; Kuhlen T; Sturm W Cyberpsychol Behav Soc Netw; 2010 Apr; 13(2):211-5. PubMed ID: 20528281 [TBL] [Abstract][Full Text] [Related]
20. Spatial decisions in rats based on the geometry of computer-generated patterns. Nekovarova T; Bures J Neurosci Lett; 2006 Feb; 394(3):211-5. PubMed ID: 16289319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]