These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25420067)

  • 1. A learning-based approach to artificial sensory feedback leads to optimal integration.
    Dadarlat MC; O'Doherty JE; Sabes PN
    Nat Neurosci; 2015 Jan; 18(1):138-44. PubMed ID: 25420067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding and Decoding of Multi-Channel ICMS in Macaque Somatosensory Cortex.
    Dadarlat MC; Sabes PN
    IEEE Trans Haptics; 2016; 9(4):508-514. PubMed ID: 27740497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.
    Prsa M; GaliƱanes GL; Huber D
    Neuron; 2017 Feb; 93(4):929-939.e6. PubMed ID: 28231470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short reaction times in response to multi-electrode intracortical microstimulation may provide a basis for rapid movement-related feedback.
    Sombeck JT; Miller LE
    J Neural Eng; 2019 Dec; 17(1):016013. PubMed ID: 31778982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parametric study of intracortical microstimulation in behaving rats for the development of artificial sensory channels.
    Semprini M; Bennicelli L; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():799-802. PubMed ID: 23366013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proprioceptive recalibration following prolonged training and increasing distortions in visuomotor adaptation.
    Salomonczyk D; Cressman EK; Henriques DY
    Neuropsychologia; 2011 Sep; 49(11):3053-62. PubMed ID: 21787794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible strategies for sensory integration during motor planning.
    Sober SJ; Sabes PN
    Nat Neurosci; 2005 Apr; 8(4):490-7. PubMed ID: 15793578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoring tactile and proprioceptive sensation through a brain interface.
    Tabot GA; Kim SS; Winberry JE; Bensmaia SJ
    Neurobiol Dis; 2015 Nov; 83():191-8. PubMed ID: 25201560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation.
    Armenta Salas M; Bashford L; Kellis S; Jafari M; Jo H; Kramer D; Shanfield K; Pejsa K; Lee B; Liu CY; Andersen RA
    Elife; 2018 Apr; 7():. PubMed ID: 29633714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting perceptual learning by fake feedback.
    Shibata K; Yamagishi N; Ishii S; Kawato M
    Vision Res; 2009 Oct; 49(21):2574-85. PubMed ID: 19531366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces.
    Daly J; Liu J; Aghagolzadeh M; Oweiss K
    J Neural Eng; 2012 Dec; 9(6):065004. PubMed ID: 23187009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-electrode stimulation in somatosensory cortex increases probability of detection.
    Zaaimi B; Ruiz-Torres R; Solla SA; Miller LE
    J Neural Eng; 2013 Oct; 10(5):056013. PubMed ID: 23985904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisensory integration during motor planning.
    Sober SJ; Sabes PN
    J Neurosci; 2003 Aug; 23(18):6982-92. PubMed ID: 12904459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERP correlates of action effect prediction and visual sensory attenuation in voluntary action.
    Hughes G; Waszak F
    Neuroimage; 2011 Jun; 56(3):1632-40. PubMed ID: 21352924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring the sense of touch with a prosthetic hand through a brain interface.
    Tabot GA; Dammann JF; Berg JA; Tenore FV; Boback JL; Vogelstein RJ; Bensmaia SJ
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18279-84. PubMed ID: 24127595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined adaptiveness of specific motor cortical ensembles underlies learning.
    Arce F; Novick I; Mandelblat-Cerf Y; Israel Z; Ghez C; Vaadia E
    J Neurosci; 2010 Apr; 30(15):5415-25. PubMed ID: 20392963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of internal forward models and proprioception in hand position estimation.
    Yavari F; Towhidkhah F; Ahmadi-Pajouh MA; Darainy M
    J Integr Neurosci; 2015 Sep; 14(3):403-18. PubMed ID: 26307154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.