These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 25420071)
1. Application of multiple imputation using the two-fold fully conditional specification algorithm in longitudinal clinical data. Welch C; Bartlett J; Petersen I Stata J; 2014 Apr; 14(2):418-431. PubMed ID: 25420071 [TBL] [Abstract][Full Text] [Related]
2. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data. Welch CA; Petersen I; Bartlett JW; White IR; Marston L; Morris RW; Nazareth I; Walters K; Carpenter J Stat Med; 2014 Sep; 33(21):3725-37. PubMed ID: 24782349 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related]
5. A comparison of multiple imputation methods for missing data in longitudinal studies. Huque MH; Carlin JB; Simpson JA; Lee KJ BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455 [TBL] [Abstract][Full Text] [Related]
6. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model. Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921 [TBL] [Abstract][Full Text] [Related]
7. Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Bartlett JW; Seaman SR; White IR; Carpenter JR; Stat Methods Med Res; 2015 Aug; 24(4):462-87. PubMed ID: 24525487 [TBL] [Abstract][Full Text] [Related]
8. A comparison of multiple imputation strategies for handling missing data in multi-item scales: Guidance for longitudinal studies. Mainzer R; Apajee J; Nguyen CD; Carlin JB; Lee KJ Stat Med; 2021 Sep; 40(21):4660-4674. PubMed ID: 34102709 [TBL] [Abstract][Full Text] [Related]
9. Dealing with missing information on covariates for excess mortality hazard regression models - Making the imputation model compatible with the substantive model. Antunes L; Mendonça D; Bento MJ; Njagi EN; Belot A; Rachet B Stat Methods Med Res; 2021 Oct; 30(10):2256-2268. PubMed ID: 34473604 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of approaches for multiple imputation of three-level data. Wijesuriya R; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2020 Aug; 20(1):207. PubMed ID: 32787781 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
12. Multiple Imputation by Fully Conditional Specification for Dealing with Missing Data in a Large Epidemiologic Study. Liu Y; De A Int J Stat Med Res; 2015; 4(3):287-295. PubMed ID: 27429686 [TBL] [Abstract][Full Text] [Related]
13. A fully conditional specification approach to multilevel imputation of categorical and continuous variables. Enders CK; Keller BT; Levy R Psychol Methods; 2018 Jun; 23(2):298-317. PubMed ID: 28557466 [TBL] [Abstract][Full Text] [Related]
14. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056 [TBL] [Abstract][Full Text] [Related]
15. Multiple Imputation in Multilevel Models. A Revision of the Current Software and Usage Examples for Researchers. García-Patos P; Olmos R Span J Psychol; 2020 Nov; 23():e46. PubMed ID: 33176896 [TBL] [Abstract][Full Text] [Related]
16. Multiple imputation for discrete data: Evaluation of the joint latent normal model. Quartagno M; Carpenter JR Biom J; 2019 Jul; 61(4):1003-1019. PubMed ID: 30868652 [TBL] [Abstract][Full Text] [Related]
17. A Comparison of Multilevel Imputation Schemes for Random Coefficient Models: Fully Conditional Specification and Joint Model Imputation with Random Covariance Matrices. Enders CK; Hayes T; Du H Multivariate Behav Res; 2018; 53(5):695-713. PubMed ID: 30693802 [TBL] [Abstract][Full Text] [Related]
18. Multiple imputation of missing data in large studies with many variables: A fully conditional specification approach using partial least squares. Grund S; Lüdtke O; Robitzsch A Psychol Methods; 2024 Sep; ():. PubMed ID: 39347773 [TBL] [Abstract][Full Text] [Related]
19. Joint Imputation of General Data. Robbins MW J Surv Stat Methodol; 2024 Feb; 12(1):183-210. PubMed ID: 38282960 [TBL] [Abstract][Full Text] [Related]
20. Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification. Nevalainen J; Kenward MG; Virtanen SM Stat Med; 2009 Dec; 28(29):3657-69. PubMed ID: 19757484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]