BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25420211)

  • 1. Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material.
    Chen EX; Fu HR; Lin R; Tan YX; Zhang J
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22871-5. PubMed ID: 25420211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid([C
    Zhao D; Zhang X; Wang W; Sui L; Guo C; Xu Y; Cheng X; Major Z; Gao S; Huo L
    Mikrochim Acta; 2021 Feb; 188(3):74. PubMed ID: 33558967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Trimethylamine Sensor Based on an Imine Covalent Organic Framework.
    Zhang W; Sun Q; Zhu Y; Sun J; Wu Z; Tian N
    ACS Sens; 2024 Jun; 9(6):3262-3271. PubMed ID: 38809959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Trimethylamine Based on a Manganese Tetraphenylporphyrin Optical Waveguide Sensing Element.
    Wang J; Nizamidin P; Zhang Y; Kari N; Yimit A
    Anal Sci; 2018; 34(5):559-565. PubMed ID: 29743427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays.
    Xiao-wei H; Zhi-hua L; Xiao-bo Z; Ji-yong S; Han-ping M; Jie-wen Z; Li-min H; Mel H
    Food Chem; 2016 Apr; 197(Pt A):930-6. PubMed ID: 26617036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine.
    Lee SH; Lim JH; Park J; Hong S; Park TH
    Biosens Bioelectron; 2015 Sep; 71():179-185. PubMed ID: 25909337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures.
    Woo HS; Na CW; Kim ID; Lee JH
    Nanotechnology; 2012 Jun; 23(24):245501. PubMed ID: 22641008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO
    Zhao C; Shen J; Xu S; Wei J; Liu H; Xie S; Pan Y; Zhao Y; Zhu Y
    Food Chem; 2022 Oct; 392():133318. PubMed ID: 35640429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcantilevers modified by specific peptide for selective detection of trimethylamine.
    Huang X; Li M; Xu X; Chen H; Ji HF; Zhu S
    Biosens Bioelectron; 2011 Dec; 30(1):140-4. PubMed ID: 22000756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy)3(2+)/mesoporous silica nanospheres/Nafion composite modified electrode.
    Cao H; Hu X; Hu C; Zhang Y; Jia N
    Biosens Bioelectron; 2013 Mar; 41():911-5. PubMed ID: 23122750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin.
    Zamolo VA; Valenti G; Venturelli E; Chaloin O; Marcaccio M; Boscolo S; Castagnola V; Sosa S; Berti F; Fontanive G; Poli M; Tubaro A; Bianco A; Paolucci F; Prato M
    ACS Nano; 2012 Sep; 6(9):7989-97. PubMed ID: 22913785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of α-Fe
    Zhu K; Zhu Z; Xu S; Zhao C; Ni T
    Food Chem; 2024 May; 441():138361. PubMed ID: 38199112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeolitic imidazolate framework as formaldehyde gas sensor.
    Chen EX; Yang H; Zhang J
    Inorg Chem; 2014 Jun; 53(11):5411-3. PubMed ID: 24813234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Power and High-Performance Trimethylamine Gas Sensor Based on n-n Heterojunction Microbelts of Perylene Diimide/CdS.
    Zhu P; Wang Y; Ma P; Li S; Fan F; Cui K; Ge S; Zhang Y; Yu J
    Anal Chem; 2019 May; 91(9):5591-5598. PubMed ID: 30892018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas chromatographic method for determination of dimethylamine, trimethylamine, and trimethylamine oxide in fish-meat frankfurters.
    Fiddler W; Doerr RC; Gates RA
    J Assoc Off Anal Chem; 1991; 74(2):400-3. PubMed ID: 2050619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G protein-coupled receptor mediated trimethylamine sensing.
    Suska A; Ibáñez AB; Lundström I; Berghard A
    Biosens Bioelectron; 2009 Dec; 25(4):715-20. PubMed ID: 19734032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an SPME-GC-MS method for the specific quantification of dimethylamine and trimethylamine: use of a new ratio for the freshness monitoring of cod fillets.
    Dehaut A; Duthen S; Grard T; Krzewinski F; N'Guessan A; Brisabois A; Duflos G
    J Sci Food Agric; 2016 Aug; 96(11):3787-94. PubMed ID: 26676937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements.
    Basozabal I; Guerreiro A; Gomez-Caballero A; Aranzazu Goicolea M; Barrio RJ
    Biosens Bioelectron; 2014 Aug; 58():138-44. PubMed ID: 24632140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A.
    Kuang H; Chen W; Xu D; Xu L; Zhu Y; Liu L; Chu H; Peng C; Xu C; Zhu S
    Biosens Bioelectron; 2010 Oct; 26(2):710-6. PubMed ID: 20643539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors.
    Akamatsu T; Itoh T; Izu N; Shin W
    Sensors (Basel); 2013 Sep; 13(9):12467-81. PubMed ID: 24048338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.