BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25420551)

  • 1. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    BMC Bioinformatics; 2014 Nov; 15():362. PubMed ID: 25420551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational approach for prediction of donor splice sites with improved accuracy.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    J Theor Biol; 2016 Sep; 404():285-294. PubMed ID: 27302911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of donor splice sites using random forest with a new sequence encoding approach.
    Meher PK; Sahu TK; Rao AR
    BioData Min; 2016; 9():4. PubMed ID: 26807151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markovian encoding models in human splice site recognition using SVM.
    Pashaei E; Aydin N
    Comput Biol Chem; 2018 Apr; 73():159-170. PubMed ID: 29486390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    Algorithms Mol Biol; 2016; 11():16. PubMed ID: 27252772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-performance approach for predicting donor splice sites based on short window size and imbalanced large samples.
    Zeng Y; Yuan H; Yuan Z; Chen Y
    Biol Direct; 2019 Apr; 14(1):6. PubMed ID: 30975175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splice site identification using probabilistic parameters and SVM classification.
    Baten AK; Chang BC; Halgamuge SK; Li J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S15. PubMed ID: 17254299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for splice sites prediction using sequence component and hidden Markov model.
    Pashaei E; Yilmaz A; Ozen M; Aydin N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3076-3079. PubMed ID: 28268961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-accuracy splice site prediction based on sequence component and position features.
    Li JL; Wang LF; Wang HY; Bai LY; Yuan ZM
    Genet Mol Res; 2012 Sep; 11(3):3432-51. PubMed ID: 23079837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature subset selection for splice site prediction.
    Degroeve S; De Baets B; Van de Peer Y; Rouzé P
    Bioinformatics; 2002; 18 Suppl 2():S75-83. PubMed ID: 12385987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNPlice: variants that modulate Intron retention from RNA-sequencing data.
    Mudvari P; Movassagh M; Kowsari K; Seyfi A; Kokkinaki M; Edwards NJ; Golestaneh N; Horvath A
    Bioinformatics; 2015 Apr; 31(8):1191-8. PubMed ID: 25481010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of Domain Adaptation Classifiers Derived From Logistic Regression for the Task of Splice Site Prediction.
    Herndon N; Caragea D
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):75-83. PubMed ID: 26849871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to study splicing from high-throughput RNA sequencing data.
    Alamancos GP; Agirre E; Eyras E
    Methods Mol Biol; 2014; 1126():357-97. PubMed ID: 24549677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global and unbiased detection of splice junctions from RNA-seq data.
    Ameur A; Wetterbom A; Feuk L; Gyllensten U
    Genome Biol; 2010; 11(3):R34. PubMed ID: 20236510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpliceJumper: a classification-based approach for calling splicing junctions from RNA-seq data.
    Chu C; Li X; Wu Y
    BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S10. PubMed ID: 26678515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.