These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 25420551)
1. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data. Meher PK; Sahu TK; Rao AR; Wahi SD BMC Bioinformatics; 2014 Nov; 15():362. PubMed ID: 25420551 [TBL] [Abstract][Full Text] [Related]
2. A computational approach for prediction of donor splice sites with improved accuracy. Meher PK; Sahu TK; Rao AR; Wahi SD J Theor Biol; 2016 Sep; 404():285-294. PubMed ID: 27302911 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition. Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682 [TBL] [Abstract][Full Text] [Related]
4. Prediction of donor splice sites using random forest with a new sequence encoding approach. Meher PK; Sahu TK; Rao AR BioData Min; 2016; 9():4. PubMed ID: 26807151 [TBL] [Abstract][Full Text] [Related]
5. Markovian encoding models in human splice site recognition using SVM. Pashaei E; Aydin N Comput Biol Chem; 2018 Apr; 73():159-170. PubMed ID: 29486390 [TBL] [Abstract][Full Text] [Related]
6. Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features. Meher PK; Sahu TK; Rao AR; Wahi SD Algorithms Mol Biol; 2016; 11():16. PubMed ID: 27252772 [TBL] [Abstract][Full Text] [Related]
7. A high-performance approach for predicting donor splice sites based on short window size and imbalanced large samples. Zeng Y; Yuan H; Yuan Z; Chen Y Biol Direct; 2019 Apr; 14(1):6. PubMed ID: 30975175 [TBL] [Abstract][Full Text] [Related]
8. Splice site identification using probabilistic parameters and SVM classification. Baten AK; Chang BC; Halgamuge SK; Li J BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S15. PubMed ID: 17254299 [TBL] [Abstract][Full Text] [Related]
9. SpliceFinder: ab initio prediction of splice sites using convolutional neural network. Wang R; Wang Z; Wang J; Li S BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982 [TBL] [Abstract][Full Text] [Related]
10. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data. Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805 [TBL] [Abstract][Full Text] [Related]
11. A novel method for splice sites prediction using sequence component and hidden Markov model. Pashaei E; Yilmaz A; Ozen M; Aydin N Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3076-3079. PubMed ID: 28268961 [TBL] [Abstract][Full Text] [Related]
12. High-accuracy splice site prediction based on sequence component and position features. Li JL; Wang LF; Wang HY; Bai LY; Yuan ZM Genet Mol Res; 2012 Sep; 11(3):3432-51. PubMed ID: 23079837 [TBL] [Abstract][Full Text] [Related]
13. Feature subset selection for splice site prediction. Degroeve S; De Baets B; Van de Peer Y; Rouzé P Bioinformatics; 2002; 18 Suppl 2():S75-83. PubMed ID: 12385987 [TBL] [Abstract][Full Text] [Related]
14. SNPlice: variants that modulate Intron retention from RNA-sequencing data. Mudvari P; Movassagh M; Kowsari K; Seyfi A; Kokkinaki M; Edwards NJ; Golestaneh N; Horvath A Bioinformatics; 2015 Apr; 31(8):1191-8. PubMed ID: 25481010 [TBL] [Abstract][Full Text] [Related]
15. SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149 [TBL] [Abstract][Full Text] [Related]
16. A Study of Domain Adaptation Classifiers Derived From Logistic Regression for the Task of Splice Site Prediction. Herndon N; Caragea D IEEE Trans Nanobioscience; 2016 Mar; 15(2):75-83. PubMed ID: 26849871 [TBL] [Abstract][Full Text] [Related]
17. Methods to study splicing from high-throughput RNA sequencing data. Alamancos GP; Agirre E; Eyras E Methods Mol Biol; 2014; 1126():357-97. PubMed ID: 24549677 [TBL] [Abstract][Full Text] [Related]
18. Global and unbiased detection of splice junctions from RNA-seq data. Ameur A; Wetterbom A; Feuk L; Gyllensten U Genome Biol; 2010; 11(3):R34. PubMed ID: 20236510 [TBL] [Abstract][Full Text] [Related]
19. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101 [TBL] [Abstract][Full Text] [Related]
20. SpliceJumper: a classification-based approach for calling splicing junctions from RNA-seq data. Chu C; Li X; Wu Y BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S10. PubMed ID: 26678515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]