These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Distribution of γδ and other T-lymphocyte subsets in patients with chronic obstructive pulmonary disease and asthma. Urboniene D; Babusyte A; Lötvall J; Sakalauskas R; Sitkauskiene B Respir Med; 2013 Mar; 107(3):413-23. PubMed ID: 23273406 [TBL] [Abstract][Full Text] [Related]
3. The proportion and function of peripheral myeloid-derived suppressor cells do not correlate with systemic inflammation in chronic obstructive pulmonary disease. Tan DB; Fernandez S; Price P; Moodley YP Hum Immunol; 2014 Jan; 75(1):5-9. PubMed ID: 24090682 [TBL] [Abstract][Full Text] [Related]
4. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. Vijayanand P; Seumois G; Pickard C; Powell RM; Angco G; Sammut D; Gadola SD; Friedmann PS; Djukanovic R N Engl J Med; 2007 Apr; 356(14):1410-22. PubMed ID: 17409322 [TBL] [Abstract][Full Text] [Related]
5. Sputum T lymphocytes in asthma, COPD and healthy subjects have the phenotype of activated intraepithelial T cells (CD69+ CD103+). Leckie MJ; Jenkins GR; Khan J; Smith SJ; Walker C; Barnes PJ; Hansel TT Thorax; 2003 Jan; 58(1):23-9. PubMed ID: 12511714 [TBL] [Abstract][Full Text] [Related]
6. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Hough KP; Trevor JL; Strenkowski JG; Wang Y; Chacko BK; Tousif S; Chanda D; Steele C; Antony VB; Dokland T; Ouyang X; Zhang J; Duncan SR; Thannickal VJ; Darley-Usmar VM; Deshane JS Redox Biol; 2018 Sep; 18():54-64. PubMed ID: 29986209 [TBL] [Abstract][Full Text] [Related]
7. Different inflammatory cell pattern and macrophage phenotype in chronic obstructive pulmonary disease patients, smokers and non-smokers. Löfdahl JM; Wahlström J; Sköld CM Clin Exp Immunol; 2006 Sep; 145(3):428-37. PubMed ID: 16907910 [TBL] [Abstract][Full Text] [Related]
8. Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness. Deshane J; Zmijewski JW; Luther R; Gaggar A; Deshane R; Lai JF; Xu X; Spell M; Estell K; Weaver CT; Abraham E; Schwiebert LM; Chaplin DD Mucosal Immunol; 2011 Sep; 4(5):503-18. PubMed ID: 21471960 [TBL] [Abstract][Full Text] [Related]
9. Increased intracellular T helper 1 proinflammatory cytokine production in peripheral blood, bronchoalveolar lavage and intraepithelial T cells of COPD subjects. Hodge G; Nairn J; Holmes M; Reynolds PN; Hodge S Clin Exp Immunol; 2007 Oct; 150(1):22-9. PubMed ID: 17614970 [TBL] [Abstract][Full Text] [Related]
10. Small Extracellular Vesicle Signaling and Mitochondrial Transfer Reprograms T Helper Cell Function in Human Asthma. Hough KP; Trevor JL; Chacko BK; Strenkowski JG; Wang Y; Goliwas KF; Bone NB; Kim YI; Holmes R; Vang S; Pritchard A; Chin J; Bodduluri S; Antony VB; Tousif S; Athar M; Chanda D; Mitra K; Zmijewski J; Zhang J; Duncan SR; Thannickal VJ; Gabrielsson S; Darley-Usmar VM; Deshane JS bioRxiv; 2024 May; ():. PubMed ID: 38746361 [TBL] [Abstract][Full Text] [Related]
11. Eosinophilic and Neutrophilic Airway Inflammation in the Phenotyping of Mild-to-Moderate Asthma and Chronic Obstructive Pulmonary Disease. Górska K; Paplińska-Goryca M; Nejman-Gryz P; Goryca K; Krenke R COPD; 2017 Apr; 14(2):181-189. PubMed ID: 27983888 [TBL] [Abstract][Full Text] [Related]
12. Inflammatory cell profiles and T-lymphocyte subsets in chronic obstructive pulmonary disease and severe persistent asthma. Tsoumakidou M; Tzanakis N; Kyriakou D; Chrysofakis G; Siafakas NM Clin Exp Allergy; 2004 Feb; 34(2):234-40. PubMed ID: 14987303 [TBL] [Abstract][Full Text] [Related]
13. Increased airway T lymphocyte microparticles in chronic obstructive pulmonary disease induces airway epithelial injury. Qiu Q; Dan X; Yang C; Hardy P; Yang Z; Liu G; Xiong W Life Sci; 2020 Nov; 261():118357. PubMed ID: 32861794 [TBL] [Abstract][Full Text] [Related]
14. Airway regulatory T cells are decreased in COPD with a rapid decline in lung function. Eriksson Ström J; Pourazar J; Linder R; Blomberg A; Lindberg A; Bucht A; Behndig AF Respir Res; 2020 Dec; 21(1):330. PubMed ID: 33317530 [TBL] [Abstract][Full Text] [Related]
16. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Kalathil SG; Lugade AA; Pradhan V; Miller A; Parameswaran GI; Sethi S; Thanavala Y Am J Respir Crit Care Med; 2014 Jul; 190(1):40-50. PubMed ID: 24825462 [TBL] [Abstract][Full Text] [Related]
17. Distinguishing adult-onset asthma from COPD: a review and a new approach. Abramson MJ; Perret JL; Dharmage SC; McDonald VM; McDonald CF Int J Chron Obstruct Pulmon Dis; 2014; 9():945-62. PubMed ID: 25246782 [TBL] [Abstract][Full Text] [Related]
18. [Difference of T helper cell subsets and B7 co-stimulatory molecule expressions by alveolar macrophages in bronchoalveolar lavage fluid between patients with allergic asthma and chronic obstructive pulmonary disease]. Zhong D; Dong L; Shi H Zhonghua Jie He He Hu Xi Za Zhi; 2001 Jul; 24(7):421-4. PubMed ID: 11803000 [TBL] [Abstract][Full Text] [Related]
19. Expansion of myeloid-derived suppressor cells in chronic obstructive pulmonary disease and lung cancer: potential link between inflammation and cancer. Scrimini S; Pons J; Agustí A; Clemente A; Sallán MC; Bauçà JM; Soriano JB; Cosio BG; Lopez M; Crespi C; Sauleda J Cancer Immunol Immunother; 2015 Oct; 64(10):1261-70. PubMed ID: 26122358 [TBL] [Abstract][Full Text] [Related]
20. Influence of smoking cessation on airway T lymphocyte subsets in COPD. Roos-Engstrand E; Ekstrand-Hammarström B; Pourazar J; Behndig AF; Bucht A; Blomberg A COPD; 2009 Apr; 6(2):112-20. PubMed ID: 19378224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]