BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25420942)

  • 21. Radiofrequency-induced heating near fixed orthodontic appliances in high field MRI systems at 3.0 Tesla.
    Regier M; Kemper J; Kaul MG; Feddersen M; Adam G; Kahl-Nieke B; Klocke A
    J Orofac Orthop; 2009 Nov; 70(6):485-94. PubMed ID: 19960291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro assessment of needle artifacts with an interactive three-dimensional MR fluoroscopy system.
    Thomas C; Springer F; Röthke M; Rempp H; Clasen S; Fritz J; Claussen CD; Pereira PL
    J Vasc Interv Radiol; 2010 Mar; 21(3):375-80. PubMed ID: 20171560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners.
    Wang ZJ; Rollins NK; Liang H; Park YJ
    Med Phys; 2015 Oct; 42(10):5871-8. PubMed ID: 26429261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional ultrashort echo magnetic resonance imaging of orthodontic appliances in the natural dentition.
    Cox RJ; Kau CH; Rasche V
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):552-61. PubMed ID: 22999679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Influence of sequence type on the extent of the susceptibility artifact in MRI--a shoulder specimen study after suture anchor repair].
    Herold T; Caro WC; Heers G; Perlick L; Grifka J; Feuerbach S; Nitz W; Lenhart M
    Rofo; 2004 Sep; 176(9):1296-301. PubMed ID: 15346265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new vascular coupling device: assessment of MRI issues at 3-tesla.
    Titterington B; Puschmann C; Shellock FG
    Magn Reson Imaging; 2014 Jun; 32(5):585-9. PubMed ID: 24581726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of orthodontic appliances on the diagnostic quality of magnetic resonance images of the head.
    Zhylich D; Krishnan P; Muthusami P; Rayner T; Shroff M; Doria A; Tompson B; Lou W; Suri S
    Am J Orthod Dentofacial Orthop; 2017 Mar; 151(3):484-499. PubMed ID: 28257733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MRI compatibility of orthodontic brackets and wires: systematic review article.
    Dobai A; Dembrovszky F; Vízkelety T; Barsi P; Juhász F; Dobó-Nagy C
    BMC Oral Health; 2022 Jul; 22(1):298. PubMed ID: 35854295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-shot 3D GRASE with cylindrical k-space trajectories.
    Ramanna S; Feinberg DA
    Magn Reson Med; 2008 Oct; 60(4):976-80. PubMed ID: 18816819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.
    Erb-Eigner K; Warmuth C; Taupitz M; Willerding G; Bertelmann E; Asbach P
    Rofo; 2013 Sep; 185(9):830-7. PubMed ID: 23888471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artifacts in brain magnetic resonance imaging due to metallic dental objects.
    Costa AL; Appenzeller S; Yasuda CL; Pereira FR; Zanardi VA; Cendes F
    Med Oral Patol Oral Cir Bucal; 2009 Jun; 14(6):E278-82. PubMed ID: 19300375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla.
    Frahm C; Gehl HB; Melchert UH; Weiss HD
    Cardiovasc Intervent Radiol; 1996; 19(5):335-40. PubMed ID: 8781155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal artifacts caused by gradient switching.
    Graf H; Steidle G; Martirosian P; Lauer UA; Schick F
    Magn Reson Med; 2005 Jul; 54(1):231-4. PubMed ID: 15968663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An improved anatomical MRI technique with suppression of fixative fluid artifacts for the investigation of human postmortem brain phantoms.
    Droby A; Yuen KS; Schänzer A; Spiwoks-Becker I; Acker T; Lienerth B; Zipp F; Deichmann R
    Magn Reson Med; 2017 Mar; 77(3):1115-1123. PubMed ID: 26947146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the dGEMRIC technique to evaluate cartilage health in the presence of surgical hardware at 3T: comparison of inversion recovery and saturation recovery approaches.
    d'Entremont AG; Kolind SH; Mädler B; Wilson DR; MacKay AL
    Skeletal Radiol; 2014 Mar; 43(3):331-44. PubMed ID: 24357123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification and minimization of magnetic susceptibility artifacts on GRE images.
    Port JD; Pomper MG
    J Comput Assist Tomogr; 2000; 24(6):958-64. PubMed ID: 11105718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging.
    Eibofner F; Wojtczyk H; Graf H; Clasen S
    Med Phys; 2014 Jun; 41(6):062301. PubMed ID: 24877833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Comparison of susceptibility artifacts generated by microchips with different geometry at 1.5 Tesla magnet resonance imaging. A phantom pilot study referring to the ASTM standard test method F2119-07].
    Dengg S; Kneissl S
    Tierarztl Prax Ausg K Kleintiere Heimtiere; 2013; 41(5):289-96. PubMed ID: 24127025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.
    Huang R; Posnansky O; Celik A; Oros-Peusquens AM; Ermer V; Irkens M; Wegener HP; Shah NJ
    MAGMA; 2006 Aug; 19(3):124-33. PubMed ID: 16865386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artefacts in magnetic resonance imaging caused by dental material.
    Eggers G; Rieker M; Kress B; Fiebach J; Dickhaus H; Hassfeld S
    MAGMA; 2005 May; 18(2):103-11. PubMed ID: 15785943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.