These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 25421206)
1. Early Expression of Parkinson's Disease-Related Mitochondrial Abnormalities in PINK1 Knockout Rats. Villeneuve LM; Purnell PR; Boska MD; Fox HS Mol Neurobiol; 2016 Jan; 53(1):171-186. PubMed ID: 25421206 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Amo T; Sato S; Saiki S; Wolf AM; Toyomizu M; Gautier CA; Shen J; Ohta S; Hattori N Neurobiol Dis; 2011 Jan; 41(1):111-8. PubMed ID: 20817094 [TBL] [Abstract][Full Text] [Related]
3. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease. Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353 [TBL] [Abstract][Full Text] [Related]
4. PINK1 protein in normal human brain and Parkinson's disease. Gandhi S; Muqit MM; Stanyer L; Healy DG; Abou-Sleiman PM; Hargreaves I; Heales S; Ganguly M; Parsons L; Lees AJ; Latchman DS; Holton JL; Wood NW; Revesz T Brain; 2006 Jul; 129(Pt 7):1720-31. PubMed ID: 16702191 [TBL] [Abstract][Full Text] [Related]
5. In search of early neuroradiological biomarkers for Parkinson's Disease: Alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 -/- rats. Cai X; Qiao J; Knox T; Iriah S; Kulkarni P; Madularu D; Morrison T; Waszczak B; Hartner JC; Ferris CF Brain Res; 2019 Mar; 1706():58-67. PubMed ID: 30389398 [TBL] [Abstract][Full Text] [Related]
6. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Gautier CA; Kitada T; Shen J Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11364-9. PubMed ID: 18687901 [TBL] [Abstract][Full Text] [Related]
7. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. Heeman B; Van den Haute C; Aelvoet SA; Valsecchi F; Rodenburg RJ; Reumers V; Debyser Z; Callewaert G; Koopman WJ; Willems PH; Baekelandt V J Cell Sci; 2011 Apr; 124(Pt 7):1115-25. PubMed ID: 21385841 [TBL] [Abstract][Full Text] [Related]
8. Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Liu W; Acín-Peréz R; Geghman KD; Manfredi G; Lu B; Li C Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12920-4. PubMed ID: 21768365 [TBL] [Abstract][Full Text] [Related]
9. Evidence of Neurobiological Changes in the Presymptomatic PINK1 Knockout Rat. Ferris CF; Morrison TR; Iriah S; Malmberg S; Kulkarni P; Hartner JC; Trivedi M J Parkinsons Dis; 2018; 8(2):281-301. PubMed ID: 29710734 [TBL] [Abstract][Full Text] [Related]
10. Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1. Amo T; Saiki S; Sawayama T; Sato S; Hattori N Neurosci Lett; 2014 Sep; 580():37-40. PubMed ID: 25092611 [TBL] [Abstract][Full Text] [Related]
11. PINK1-mediated phosphorylation of Miro inhibits synaptic growth and protects dopaminergic neurons in Drosophila. Tsai PI; Course MM; Lovas JR; Hsieh CH; Babic M; Zinsmaier KE; Wang X Sci Rep; 2014 Nov; 4():6962. PubMed ID: 25376463 [TBL] [Abstract][Full Text] [Related]
12. Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration. Stauch KL; Villeneuve LM; Purnell PR; Ottemann BM; Emanuel K; Fox HS Proteomics Clin Appl; 2016 Dec; 10(12):1205-1217. PubMed ID: 27568932 [TBL] [Abstract][Full Text] [Related]
13. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Kim J; Fiesel FC; Belmonte KC; Hudec R; Wang WX; Kim C; Nelson PT; Springer W; Kim J Mol Neurodegener; 2016 Jul; 11(1):55. PubMed ID: 27456084 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease. Dagda RK; Gusdon AM; Pien I; Strack S; Green S; Li C; Van Houten B; Cherra SJ; Chu CT Cell Death Differ; 2011 Dec; 18(12):1914-23. PubMed ID: 21637291 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial import stress and PINK1-mediated mitophagy: the role of the PINK1-TOMM-TIMM23 supercomplex. Eldeeb MA; Fallahi A; Soumbasis A; Bayne AN; Trempe JF; Fon EA Autophagy; 2024 Aug; 20(8):1903-1905. PubMed ID: 38597070 [TBL] [Abstract][Full Text] [Related]
16. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Orr AL; Rutaganira FU; de Roulet D; Huang EJ; Hertz NT; Shokat KM; Nakamura K Neurochem Int; 2017 Oct; 109():106-116. PubMed ID: 28434973 [TBL] [Abstract][Full Text] [Related]
17. Biochemical properties of the kinase PINK1 as sensor protein for mitochondrial damage signalling. Rüb C; Schröder N; Voos W Biochem Soc Trans; 2015 Apr; 43(2):287-91. PubMed ID: 25849931 [TBL] [Abstract][Full Text] [Related]
18. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Dodson MW; Guo M Curr Opin Neurobiol; 2007 Jun; 17(3):331-7. PubMed ID: 17499497 [TBL] [Abstract][Full Text] [Related]