BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25421230)

  • 1. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.
    Kajimoto M; Ledee DR; Xu C; Kajimoto H; Isern NG; Portman MA
    Circ J; 2014; 78(12):2867-75. PubMed ID: 25421230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation.
    Kajimoto M; Ledee DR; Xu C; Kajimoto H; Isern NG; Portman MA
    Circ J; 2014 Oct; ():. PubMed ID: 25354460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of continuous triiodothyronine infusion on the tricarboxylic acid cycle in the normal immature swine heart under extracorporeal membrane oxygenation in vivo.
    Kajimoto M; Priddy CM; Ledee DR; Xu C; Isern N; Olson AK; Portman MA
    Am J Physiol Heart Circ Physiol; 2014 Apr; 306(8):H1164-70. PubMed ID: 24531815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization.
    Files MD; Kajimoto M; O'Kelly Priddy CM; Ledee DR; Xu C; Des Rosiers C; Isern N; Portman MA
    J Am Heart Assoc; 2014 Mar; 3(2):e000680. PubMed ID: 24650924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Right ventricular metabolism during venoarterial extracorporeal membrane oxygenation in immature swine heart in vivo.
    Kajimoto M; Ledee DR; Isern NG; Portman MA
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H721-H727. PubMed ID: 28159812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triiodothyronine as a therapeutic candidate for cardiac metabolism in the failing heart.
    Matoba S
    Circ J; 2014; 78(12):2836-7. PubMed ID: 25381802
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model.
    Kajimoto M; Ledee DR; Olson AK; Isern NG; Des Rosiers C; Portman MA
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(7):H1157-65. PubMed ID: 26232235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo.
    Kajimoto M; O'Kelly Priddy CM; Ledee DR; Xu C; Isern N; Olson AK; Portman MA
    J Mol Cell Cardiol; 2013 Sep; 62():144-52. PubMed ID: 23727393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model.
    Ledee DR; Kajimoto M; O'Kelly Priddy CM; Olson AK; Isern N; Robillard-Frayne I; Des Rosiers C; Portman MA
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H137-46. PubMed ID: 25910802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis.
    Kajimoto M; O'Kelly Priddy CM; Ledee DR; Xu C; Isern N; Olson AK; Des Rosiers C; Portman MA
    J Am Heart Assoc; 2013 Aug; 2(4):e000106. PubMed ID: 23959443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation.
    Priddy CM; Kajimoto M; Ledee DR; Bouchard B; Isern N; Olson AK; Des Rosiers C; Portman MA
    Am J Physiol Heart Circ Physiol; 2013 Feb; 304(3):H406-14. PubMed ID: 23203964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass.
    Olson AK; Bouchard B; Ning XH; Isern N; Rosiers CD; Portman MA
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1086-93. PubMed ID: 22180654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High dietary sucrose triggers hyperinsulinemia, increases myocardial beta-oxidation, reduces glycolytic flux and delays post-ischemic contractile recovery.
    Gonsolin D; Couturier K; Garait B; Rondel S; Novel-Chaté V; Peltier S; Faure P; Gachon P; Boirie Y; Keriel C; Favier R; Pepe S; Demaison L; Leverve X
    Mol Cell Biochem; 2007 Jan; 295(1-2):217-28. PubMed ID: 16944307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid oxidation in the heart.
    Grynberg A; Demaison L
    J Cardiovasc Pharmacol; 1996; 28 Suppl 1():S11-7. PubMed ID: 8891866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of triiodothyronine administration in experimental myocardial injury.
    Hsu RB; Huang TS; Chen YS; Chu SH
    J Endocrinol Invest; 1995 Oct; 18(9):702-9. PubMed ID: 8719301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion.
    Okere IC; McElfresh TA; Brunengraber DZ; Martini W; Sterk JP; Huang H; Chandler MP; Brunengraber H; Stanley WC
    J Appl Physiol (1985); 2006 Jan; 100(1):76-82. PubMed ID: 16141384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.
    Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC
    J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heart is better protected against myocardial infarction in the fed state compared to the fasted state.
    Liepinsh E; Makrecka M; Kuka J; Makarova E; Vilskersts R; Cirule H; Sevostjanovs E; Grinberga S; Pugovics O; Dambrova M
    Metabolism; 2014 Jan; 63(1):127-36. PubMed ID: 24140100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dichloroacetate on mechanical recovery and oxidation of physiologic substrates after ischemia and reperfusion in the isolated heart.
    Barak C; Reed MK; Maniscalco SP; Sherry AD; Malloy CR; Jessen ME
    J Cardiovasc Pharmacol; 1998 Mar; 31(3):336-44. PubMed ID: 9514176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons.
    Khairallah M; Labarthe F; Bouchard B; Danialou G; Petrof BJ; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1461-70. PubMed ID: 14670819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.