These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 25421315)
1. Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Church TW; Weatherall KL; Corrêa SA; Prole DL; Brown JT; Marrion NV Eur J Neurosci; 2015 Feb; 41(3):305-15. PubMed ID: 25421315 [TBL] [Abstract][Full Text] [Related]
2. Preferential formation of human heteromeric SK2:SK3 channels limits homomeric SK channel assembly and function. Butler AS; Hancox JC; Marrion NV J Biol Chem; 2023 Jan; 299(1):102783. PubMed ID: 36502918 [TBL] [Abstract][Full Text] [Related]
3. Small conductance Ca2+-activated K+ channels as targets of CNS drug development. Blank T; Nijholt I; Kye MJ; Spiess J Curr Drug Targets CNS Neurol Disord; 2004 Jun; 3(3):161-7. PubMed ID: 15180477 [TBL] [Abstract][Full Text] [Related]
4. Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channels. Weatherall KL; Seutin V; Liégeois JF; Marrion NV Proc Natl Acad Sci U S A; 2011 Nov; 108(45):18494-9. PubMed ID: 22025703 [TBL] [Abstract][Full Text] [Related]
5. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca Higham J; Sahu G; Wazen RM; Colarusso P; Gregorie A; Harvey BSJ; Goudswaard L; Varley G; Sheppard DN; Turner RW; Marrion NV Mol Pharmacol; 2019 Jul; 96(1):115-126. PubMed ID: 31048549 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Jäger H; Grissmer S Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028 [TBL] [Abstract][Full Text] [Related]
7. The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. Monaghan AS; Benton DC; Bahia PK; Hosseini R; Shah YA; Haylett DG; Moss GW J Biol Chem; 2004 Jan; 279(2):1003-9. PubMed ID: 14559917 [TBL] [Abstract][Full Text] [Related]
8. Correspondences between the binding characteristics of a non-natural peptide, Lei-Dab7, and the distribution of SK subunits in the rat central nervous system. Aidi-Knani S; Pezard L; Mpari B; Ben Hamida J; Sabatier JM; Mourre C; Regaya I Eur J Pharmacol; 2015 Apr; 752():106-11. PubMed ID: 25704615 [TBL] [Abstract][Full Text] [Related]
9. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. Nolting A; Ferraro T; D'hoedt D; Stocker M J Biol Chem; 2007 Feb; 282(6):3478-86. PubMed ID: 17142458 [TBL] [Abstract][Full Text] [Related]
10. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium. Noble K; Floyd R; Shmygol A; Shmygol A; Mobasheri A; Wray S Cell Calcium; 2010 Jan; 47(1):47-54. PubMed ID: 19969350 [TBL] [Abstract][Full Text] [Related]
12. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells. Dale TJ; Cryan JE; Chen MX; Trezise DJ Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):470-7. PubMed ID: 12382077 [TBL] [Abstract][Full Text] [Related]
13. The small conductance Ca Rice CA; Stackman RW Neuropharmacology; 2024 Jul; 252():109960. PubMed ID: 38631563 [TBL] [Abstract][Full Text] [Related]
14. rSK1 in Rat Neurons: A Controller of Membrane rSK2? Autuori E; Sedlak P; Xu L; C Ridder M; Tedoldi A; Sah P Front Neural Circuits; 2019; 13():21. PubMed ID: 31001092 [TBL] [Abstract][Full Text] [Related]
15. Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Tuteja D; Rafizadeh S; Timofeyev V; Wang S; Zhang Z; Li N; Mateo RK; Singapuri A; Young JN; Knowlton AA; Chiamvimonvat N Circ Res; 2010 Oct; 107(7):851-9. PubMed ID: 20689065 [TBL] [Abstract][Full Text] [Related]
16. Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. D'hoedt D; Hirzel K; Pedarzani P; Stocker M J Biol Chem; 2004 Mar; 279(13):12088-92. PubMed ID: 14761961 [TBL] [Abstract][Full Text] [Related]
17. Small conductance Ca2+-activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells. Benton DC; Monaghan AS; Hosseini R; Bahia PK; Haylett DG; Moss GW J Physiol; 2003 Nov; 553(Pt 1):13-9. PubMed ID: 14555714 [TBL] [Abstract][Full Text] [Related]
18. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata. Yanovsky Y; Zhang W; Misgeld U Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104 [TBL] [Abstract][Full Text] [Related]
19. Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Stocker M; Pedarzani P Mol Cell Neurosci; 2000 May; 15(5):476-93. PubMed ID: 10833304 [TBL] [Abstract][Full Text] [Related]
20. Characterization of an apamin-sensitive small-conductance Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to EDHF. Burnham MP; Bychkov R; Félétou M; Richards GR; Vanhoutte PM; Weston AH; Edwards G Br J Pharmacol; 2002 Mar; 135(5):1133-43. PubMed ID: 11877319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]