These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 25421364)
1. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme. Bogart JA; Lewis AJ; Schelter EJ Chemistry; 2015 Jan; 21(4):1743-8. PubMed ID: 25421364 [TBL] [Abstract][Full Text] [Related]
2. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Pol A; Barends TR; Dietl A; Khadem AF; Eygensteyn J; Jetten MS; Op den Camp HJ Environ Microbiol; 2014 Jan; 16(1):255-64. PubMed ID: 24034209 [TBL] [Abstract][Full Text] [Related]
3. How Can Methanol Dehydrogenase from Methylacidiphilum fumariolicum Work with the Alien Ce Prejanò M; Marino T; Russo N Chemistry; 2017 Jun; 23(36):8652-8657. PubMed ID: 28488399 [TBL] [Abstract][Full Text] [Related]
4. Electrocatalysis of a Europium-Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron-Acceptor Cytochrome c Kalimuthu P; Daumann LJ; Pol A; Op den Camp HJM; Bernhardt PV Chemistry; 2019 Jul; 25(37):8760-8768. PubMed ID: 30908783 [TBL] [Abstract][Full Text] [Related]
5. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Keltjens JT; Pol A; Reimann J; Op den Camp HJ Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778 [TBL] [Abstract][Full Text] [Related]
6. The preferred reaction path for the oxidation of methanol by PQQ-containing methanol dehydrogenase: addition-elimination versus hydride-transfer mechanism. Leopoldini M; Russo N; Toscano M Chemistry; 2007; 13(7):2109-17. PubMed ID: 17149777 [TBL] [Abstract][Full Text] [Related]
7. Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. Schmitz RA; Picone N; Singer H; Dietl A; Seifert KA; Pol A; Jetten MSM; Barends TRM; Daumann LJ; Op den Camp HJM mBio; 2021 Oct; 12(5):e0170821. PubMed ID: 34544276 [TBL] [Abstract][Full Text] [Related]
8. Detailed active site configuration of a new crystal form of methanol dehydrogenase from Methylophilus W3A1 at 1.9 A resolution. Xia ZX; He YN; Dai WW; White SA; Boyd GD; Mathews FS Biochemistry; 1999 Jan; 38(4):1214-20. PubMed ID: 9930981 [TBL] [Abstract][Full Text] [Related]
9. The enzymatic reaction-induced configuration change of the prosthetic group PQQ of methanol dehydrogenase. Li J; Gan JH; Mathews FS; Xia ZX Biochem Biophys Res Commun; 2011 Mar; 406(4):621-6. PubMed ID: 21356200 [TBL] [Abstract][Full Text] [Related]
10. Lanthanide-induced conformational change of methanol dehydrogenase involving coordination change of cofactor pyrroloquinoline quinone. Tsushima S Phys Chem Chem Phys; 2019 Oct; 21(39):21979-21983. PubMed ID: 31552950 [TBL] [Abstract][Full Text] [Related]
11. How Lanthanide Ions Affect the Addition-Elimination Step of Methanol Dehydrogenases. Prejanò M; Russo N; Marino T Chemistry; 2020 Sep; 26(49):11334-11339. PubMed ID: 32369635 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a calcium(II)-pyrroloquinoline quinone (PQQ) complex outside a protein environment. Lumpe H; Mayer P; Daumann LJ Acta Crystallogr C Struct Chem; 2020 Dec; 76(Pt 12):1051-1056. PubMed ID: 33273141 [TBL] [Abstract][Full Text] [Related]
13. Synthetic modeling of the structure and function of the rare-earth dependent methanol dehydrogenase cofactor. Knasin AL; Schelter EJ Methods Enzymol; 2021; 650():19-55. PubMed ID: 33867022 [TBL] [Abstract][Full Text] [Related]
14. Role of rare earth elements in methanol oxidation. Picone N; Op den Camp HJ Curr Opin Chem Biol; 2019 Apr; 49():39-44. PubMed ID: 30308436 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of methanol dehydrogenase, a quinoprotein from the marine methylotrophic bacterium Methylophaga aminisulfidivorans MP Cao TP; Choi JM; Kim SW; Lee SH J Microbiol; 2018 Apr; 56(4):246-254. PubMed ID: 29492864 [TBL] [Abstract][Full Text] [Related]
17. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates. Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017 [TBL] [Abstract][Full Text] [Related]
18. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Williams PA; Coates L; Mohammed F; Gill R; Erskine PT; Coker A; Wood SP; Anthony C; Cooper JB Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):75-9. PubMed ID: 15608378 [TBL] [Abstract][Full Text] [Related]
19. Crystal Structure of the Catalytic and Cytochrome Takeda K; Ishida T; Yoshida M; Samejima M; Ohno H; Igarashi K; Nakamura N Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604769 [TBL] [Abstract][Full Text] [Related]
20. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Zheng YJ; Bruice TC Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11881-6. PubMed ID: 9342331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]