BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 25421434)

  • 1. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes.
    Kannan S; Rogozin IB; Koonin EV
    BMC Evol Biol; 2014 Nov; 14():237. PubMed ID: 25421434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and evolution of the mitochondrial proteome.
    Kurland CG; Andersson SG
    Microbiol Mol Biol Rev; 2000 Dec; 64(4):786-820. PubMed ID: 11104819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.
    He D; Fu CJ; Baldauf SL
    Mol Biol Evol; 2016 Jan; 33(1):122-33. PubMed ID: 26412445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and evolution of spliceosomal introns.
    Rogozin IB; Carmel L; Csuros M; Koonin EV
    Biol Direct; 2012 Apr; 7():11. PubMed ID: 22507701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome.
    Gray MW; Burger G; Derelle R; Klimeš V; Leger MM; Sarrasin M; Vlček Č; Roger AJ; Eliáš M; Lang BF
    BMC Biol; 2020 Mar; 18(1):22. PubMed ID: 32122349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution.
    Archibald JM; O'Kelly CJ; Doolittle WF
    Mol Biol Evol; 2002 Apr; 19(4):422-31. PubMed ID: 11919283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach.
    Csurös M; Rogozin IB; Koonin EV
    Mol Biol Evol; 2008 May; 25(5):903-11. PubMed ID: 18296415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.
    Koonin EV; Csuros M; Rogozin IB
    Wiley Interdiscip Rev RNA; 2013; 4(1):93-105. PubMed ID: 23139082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the bc1 complex from Seculamonas ecuadoriensis, a jakobid flagellate with an ancestral mitochondrial genome.
    Marx S; Baumgärtner M; Kannan S; Braun HP; Lang BF; Burger G
    Mol Biol Evol; 2003 Jan; 20(1):145-53. PubMed ID: 12519917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?
    Koonin EV
    Biol Direct; 2006 Aug; 1():22. PubMed ID: 16907971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How energy flow shapes cell evolution.
    Lane N
    Curr Biol; 2020 May; 30(10):R471-R476. PubMed ID: 32428484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria.
    Gray MW
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10133-8. PubMed ID: 25848019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial genomes revisited: why do different lineages retain different genes?
    Butenko A; Lukeš J; Speijer D; Wideman JG
    BMC Biol; 2024 Jan; 22(1):15. PubMed ID: 38273274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and genetics across the prokaryote-eukaryote divide.
    Lane N
    Biol Direct; 2011 Jun; 6():35. PubMed ID: 21714941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity.
    Tria FDK; Brueckner J; Skejo J; Xavier JC; Kapust N; Knopp M; Wimmer JLE; Nagies FSP; Zimorski V; Gould SB; Garg SG; Martin WF
    Genome Biol Evol; 2021 May; 13(5):. PubMed ID: 33739376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evolution of mitochondria].
    Litoshenko AIa
    Tsitol Genet; 2002; 36(5):49-57. PubMed ID: 12442548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin.
    Thiergart T; Landan G; Schenk M; Dagan T; Martin WF
    Genome Biol Evol; 2012; 4(4):466-85. PubMed ID: 22355196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists.
    Burger G; Gray MW; Forget L; Lang BF
    Genome Biol Evol; 2013; 5(2):418-38. PubMed ID: 23335123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans.
    Kamikawa R; Shiratori T; Ishida K; Miyashita H; Roger AJ
    Genome Biol Evol; 2016 Feb; 8(2):458-66. PubMed ID: 26833505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.