These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25421629)

  • 1. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.
    Patterson JA; Ricke SC
    J Environ Sci Health B; 2015; 50(1):62-7. PubMed ID: 25421629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18.
    Jeyanathan J; Escobar M; Wallace RJ; Fievez V; Vlaeminck B
    BMC Microbiol; 2016 Jun; 16():104. PubMed ID: 27283157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and utilization of xylan by the ruminal bacteria Butyrivibrio fibrisolvens and Selenomonas ruminantium.
    Cotta MA; Zeltwanger RL
    Appl Environ Microbiol; 1995 Dec; 61(12):4396-402. PubMed ID: 8534103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen.
    Maia MR; Chaudhary LC; Figueres L; Wallace RJ
    Antonie Van Leeuwenhoek; 2007 May; 91(4):303-14. PubMed ID: 17072533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology.
    Krause DO; Smith WJM; McSweeney CS
    Microbiology (Reading); 2004 Sep; 150(Pt 9):2899-2909. PubMed ID: 15347749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thymol on ruminal microorganisms.
    Evans JD; Martin SA
    Curr Microbiol; 2000 Nov; 41(5):336-40. PubMed ID: 11014870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of methanol on the growth of gastrointestinal anaerobes.
    Caldwell DR
    Can J Microbiol; 1989 Feb; 35(2):313-7. PubMed ID: 2743215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria.
    Barbosa TM; Scott KP; Flint HJ
    Environ Microbiol; 1999 Feb; 1(1):53-64. PubMed ID: 11207718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of potassium ion concentrations on the antimicrobial activities of ionophores against ruminal anaerobes.
    Dawson KA; Boling JA
    Appl Environ Microbiol; 1987 Oct; 53(10):2363-7. PubMed ID: 3426214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chetomin on growth and acidic fermentation products of rumen bacteria.
    Jen WC; Jones GA
    Can J Microbiol; 1983 Oct; 29(10):1399-404. PubMed ID: 6686488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens.
    Kalmokoff ML; Teather RM
    Appl Environ Microbiol; 1997 Feb; 63(2):394-402. PubMed ID: 9023920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-2 toxin metabolism by ruminal bacteria and its effect on their growth.
    Westlake K; Mackie RI; Dutton MF
    Appl Environ Microbiol; 1987 Mar; 53(3):587-92. PubMed ID: 3579272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis.
    Dai X; Hackmann TJ; Lobo RR; Faciola AP
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria.
    De Lorme M; Craig M
    Curr Microbiol; 2009 Jan; 58(1):81-6. PubMed ID: 18839246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased expression of a molecular chaperone GroEL in response to unsaturated fatty acids by the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens.
    Devillard E; Andant N; John Wallace R
    FEMS Microbiol Lett; 2006 Sep; 262(2):244-8. PubMed ID: 16923082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis of small cryptic plasmids isolated from Selenomonas ruminantium S20.
    Nakamura M; Nagamine T; Ogata K; Tajima K; Aminov RI; Benno Y
    Curr Microbiol; 1999 Feb; 38(2):107-12. PubMed ID: 9871109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
    Russell JB; Dombrowski DB
    Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.