BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25421845)

  • 1. Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in Escherichia coli at anaerobic condition.
    Wang Y; Li Y; Xu T; Shi Z; Wu Q
    Biotechnol Bioeng; 2015 May; 112(5):947-56. PubMed ID: 25421845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression of proteorhodopsin enhances H2 production in Escherichia coli when endogenous Hyd-4 is overexpressed.
    Kuniyoshi TM; Balan A; Schenberg AC; Severino D; Hallenbeck PC
    J Biotechnol; 2015 Jul; 206():52-7. PubMed ID: 25913175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect monitoring of acetate exhaustion and cell recycle improve lactate production by non-growing Escherichia coli.
    Zhu Y; Eiteman MA; Altman E
    Biotechnol Lett; 2008 Nov; 30(11):1943-6. PubMed ID: 18575807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase.
    Kim JY; Jo BH; Jo Y; Cha HJ
    Microb Cell Fact; 2012 Jan; 11():2. PubMed ID: 22217184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump.
    Bertsova YV; Bogachev AV; Skulachev VP
    Biochemistry (Mosc); 2015 Apr; 80(4):449-54. PubMed ID: 25869362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli.
    Song Y; Cartron ML; Jackson PJ; Davison PA; Dickman MJ; Zhu D; Huang WE; Hunter CN
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP photosynthetic vesicles for light-driven bioprocesses.
    Hara KY; Suzuki R; Suzuki T; Yoshida M; Kino K
    Biotechnol Lett; 2011 Jun; 33(6):1133-8. PubMed ID: 21287230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli.
    Wei XX; Shi ZY; Yuan MQ; Chen GQ
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):703-12. PubMed ID: 19107470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.
    Johnson ET; Baron DB; Naranjo B; Bond DR; Schmidt-Dannert C; Gralnick JA
    Appl Environ Microbiol; 2010 Jul; 76(13):4123-9. PubMed ID: 20453141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.
    Schuhmacher T; Löffler M; Hurler T; Takors R
    J Biotechnol; 2014 Nov; 190():96-104. PubMed ID: 24833421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ light responses of the proteorhodopsin-bearing Antarctic sea-ice bacterium, Psychroflexus torques.
    Burr DJ; Martin A; Maas EW; Ryan KG
    ISME J; 2017 Sep; 11(9):2155-2158. PubMed ID: 28524871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-powering Escherichia coli with proteorhodopsin.
    Walter JM; Greenfield D; Bustamante C; Liphardt J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2408-12. PubMed ID: 17277079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli.
    Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL
    J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host.
    Martinez A; Bradley AS; Waldbauer JR; Summons RE; DeLong EF
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5590-5. PubMed ID: 17372221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of proteorhodopsin-bearing bacterium JL-3 from fresh water and characterization of the proteorhodopsin.
    Zhu W; Lan Y; Lou X; Han N; Ran T; Xu L; Xu D; Wang WW
    FEMS Microbiol Lett; 2013 Jul; 344(1):10-7. PubMed ID: 23551202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Insight into Functional Changes of Proteorhodopsin-Containing Bacterial Species Psychroflexus torquis under Different Illumination and Salinity Levels.
    Feng S; Powell SM; Wilson R; Bowman JP
    J Proteome Res; 2015 Sep; 14(9):3848-58. PubMed ID: 26179671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering for acetate control in large scale fermentation.
    Tao Y; Cheng Q; Kopatsis AD
    Methods Mol Biol; 2012; 834():283-303. PubMed ID: 22144366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.
    Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity and functional analysis of proteorhodopsin in marine Flavobacteria.
    Yoshizawa S; Kawanabe A; Ito H; Kandori H; Kogure K
    Environ Microbiol; 2012 May; 14(5):1240-8. PubMed ID: 22329552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola.
    Keffer JL; Hahn MW; Maresca JA
    J Bacteriol; 2015 Aug; 197(16):2704-12. PubMed ID: 26055118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.