These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25422006)

  • 1. sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.
    Castro MC; Colombini EL; Aquino PT; Arjunan SP; Kumar DK
    Biomed Eng Online; 2014 Nov; 13():155. PubMed ID: 25422006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HD-sEMG-based research on activation heterogeneity of skeletal muscles and the joint force estimation during elbow flexion.
    Zhang C; Chen X; Cao S; Zhang X; Chen X
    J Neural Eng; 2018 Oct; 15(5):056027. PubMed ID: 30010094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SEMG signal analysis at acupressure points for elbow movement.
    Ryait HS; Arora AS; Agarwal R
    J Electromyogr Kinesiol; 2011 Oct; 21(5):868-76. PubMed ID: 21816622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation.
    Song Z; Zhang S
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field.
    Hou J; Sun Y; Sun L; Pan B; Huang Z; Wu J; Zhang Z
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the fast orthogonal search method to estimate optimal joint angle for upper limb Hill-muscle models.
    Mountjoy K; Morin E; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):790-8. PubMed ID: 19932992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast orthogonal search method to estimate upper arm Hill-based muscle model parameters.
    Mountjoy KC; Hashtrudi-Zaad K; Morin EL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3720-5. PubMed ID: 19163520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of joint angle based on surface electromyogram signals recorded at different load levels.
    Azab AM; Arvanch M; Mihaylova LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2538-2541. PubMed ID: 29060416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of gender, level of co-contraction, and initial angle on elbow extensor muscle stiffness and damping under a step increase in elbow flexion moment.
    Lee Y; Ashton-Miller JA
    Ann Biomed Eng; 2011 Oct; 39(10):2542-9. PubMed ID: 21484509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. System and modelling errors in motion analysis: implications for the measurement of the elbow angle in cricket bowling.
    Elliott BC; Alderson JA; Denver ER
    J Biomech; 2007; 40(12):2679-85. PubMed ID: 17307186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for quantitative SEMG decomposition and MUAP classification during voluntary isovelocity elbow flexion.
    Akazawa J; Okuno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6776-9. PubMed ID: 24111299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis.
    Hasan Z; Enoka RM
    Exp Brain Res; 1985; 59(3):441-50. PubMed ID: 4029320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network committees for finger joint angle estimation from surface EMG signals.
    Shrirao NA; Reddy NP; Kosuri DR
    Biomed Eng Online; 2009 Jan; 8():2. PubMed ID: 19154615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of countermovement on elbow joint extension power-load characteristics.
    Miyamoto N; Wakahara T; Sugisaki N; Murata K; Kanehisa H; Fukunaga T; Kawakami Y
    J Sports Sci; 2010 Dec; 28(14):1535-42. PubMed ID: 21049316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of prophylactic hyperextension elbow braces on limiting active and passive elbow extension prephysiological and postphysiological loading.
    Lake AW; Sitler MR; Stearne DJ; Swanik CB; Tierney R
    J Orthop Sports Phys Ther; 2005 Dec; 35(12):837-43. PubMed ID: 16848104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.