These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25422129)

  • 1. Comparison of sensor characteristics of three real-time monitors for organic vapors.
    Hori H; Ishimatsu S; Fueta Y; Hinoue M; Ishidao T
    J Occup Health; 2015; 57(1):13-9. PubMed ID: 25422129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of a real time monitor using the interference enhanced reflection method for organic vapors.
    Hori H; Ishimatsu S; Fueta Y; Hinoue M; Ishidao T
    J UOEH; 2013 Dec; 35(4):267-72. PubMed ID: 24334693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Sensing characteristics of a real-time monitor using a photoionization detector on organic solvent vapors].
    Hori H; Ishematsu S; Fueta Y; Hinoue M; Ishidao T
    J UOEH; 2012 Dec; 34(4):363-8. PubMed ID: 23270260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Evaluation of individual exposure to organic solvents using a portable VOC monitor].
    Enomoto M
    Sangyo Eiseigaku Zasshi; 2006 Nov; 48(6):214-20. PubMed ID: 17170515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors.
    Hori H; Noritake Y; Murobushi H; Higashi T; Tanaka I
    Appl Occup Environ Hyg; 1999 Aug; 14(8):558-64. PubMed ID: 10462851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaporizing characteristics of mixed-solvents in indoor environment.
    Chen ML; Uang MS; Mao IF
    Sci Total Environ; 1997 Oct; 205(2-3):129-35. PubMed ID: 9372625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a new respirator for organic vapors with a breakthrough detector using a semiconductor gas sensor.
    Hori H; Ishidao T; Ishimatsu S
    Appl Occup Environ Hyg; 2003 Feb; 18(2):90-5. PubMed ID: 12519683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of interferents on the performance of direct-reading organic vapor monitors.
    LeBouf RF; Coffey CC
    J Air Waste Manag Assoc; 2015 Mar; 65(3):261-9. PubMed ID: 25947122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center.
    Noguchi M; Mizukoshi A; Yanagisawa Y; Yamasaki A
    Int J Environ Res Public Health; 2016 Jul; 13(5):. PubMed ID: 27455290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.
    Hori H; Ishidao T; Ishimatsu S
    J UOEH; 2010 Dec; 32(4):293-302. PubMed ID: 21226420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of mathematical models for determination of volatile organic compounds emission from flooring adhesives].
    Wiglusz R; Sitko E; Pecka I; Nikel G
    Rocz Panstw Zakl Hig; 2005; 56(4):379-86. PubMed ID: 16610675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a real-time method for monitoring volatile organic compounds in indoor air in a Japanese university.
    Hori H; Ishimatsu S; Fueta Y; Ishidao T
    Environ Health Prev Med; 2013 Jul; 18(4):285-92. PubMed ID: 23184473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of calibration environment on the performance of direct-reading organic vapor monitors.
    LeBouf RF; Slaven JE; Coffey CC
    J Air Waste Manag Assoc; 2013 May; 63(5):528-33. PubMed ID: 23786144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.
    Limero TF; Nazarov EG; Menlyadiev M; Eiceman GA
    Analyst; 2015 Feb; 140(3):922-30. PubMed ID: 25501714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the chemical exposure monitor with indoor positioning (CEMWIP) for workplace VOC surveys.
    Brown KK; Shaw PB; Mead KR; Kovein RJ; Voorhees RT; Brandes AR
    J Occup Environ Hyg; 2016; 13(6):401-12. PubMed ID: 26786234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the response of some portable, direct-reading 10.2 eV and 11.8 eV photoionization detectors, and a flame ionization gas chromatograph for organic vapors in high humidity atmospheres.
    Barsky JB; Que Hee SS; Clark CS
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):9-14. PubMed ID: 4025151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.
    Bouchard D; Wanner P; Luo H; McLoughlin PW; Henderson JK; Pirkle RJ; Hunkeler D
    J Chromatogr A; 2017 Oct; 1520():23-34. PubMed ID: 28935261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal reconditioning characteristics of a respirator cartridge for organic vapors using humid air as the desorption gas.
    Hori H; Ishidao T; Ishimatsu S
    J Occup Health; 2010; 52(2):125-31. PubMed ID: 20179378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures.
    Lu CJ; Whiting J; Sacks RD; Zellers ET
    Anal Chem; 2003 Mar; 75(6):1400-9. PubMed ID: 12659202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array.
    Groves WA; Zellers ET
    Ann Occup Hyg; 2001 Nov; 45(8):609-23. PubMed ID: 11718657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.