BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 25422264)

  • 21. Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium.
    Jayatilake JA; Samaranayake YH; Cheung LK; Samaranayake LP
    J Oral Pathol Med; 2006 Sep; 35(8):484-91. PubMed ID: 16918600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis.
    Nash EE; Peters BM; Palmer GE; Fidel PL; Noverr MC
    Infect Immun; 2014 Aug; 82(8):3426-35. PubMed ID: 24891104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis.
    Yang L; Cheng T; Shao J
    Med Mycol; 2023 Aug; 61(8):. PubMed ID: 37533203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. T cells specific for Candida albicans antigens and producing type 2 cytokines in lesional mucosa of untreated HIV-infected patients with pseudomembranous oropharyngeal candidiasis.
    Vultaggio A; Lombardelli L; Giudizi MG; Biagiotti R; Mazzinghi B; Scaletti C; Mazzetti M; Livi C; Leoncini F; Romagnani S; Maggi E; Piccinni MP
    Microbes Infect; 2008 Feb; 10(2):166-74. PubMed ID: 18249024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis.
    Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA
    Virulence; 2014; 5(8):810-8. PubMed ID: 25483774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adhesion of
    Van Dyck K; Viela F; Mathelié-Guinlet M; Demuyser L; Hauben E; Jabra-Rizk MA; Vande Velde G; Dufrêne YF; Krom BP; Van Dijck P
    Front Cell Infect Microbiol; 2020; 10():624839. PubMed ID: 33604309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Staphylococcus-Candida Interaction Models: Antibiotic Resistance Testing and Host Interactions.
    Scheres N; Krom BP
    Methods Mol Biol; 2016; 1356():153-61. PubMed ID: 26519071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice.
    Sundstrom P; Balish E; Allen CM
    J Infect Dis; 2002 Feb; 185(4):521-30. PubMed ID: 11865405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.
    Ishijima SA; Hayama K; Takahashi M; Holmes AR; Cannon RD; Abe S
    Med Mycol; 2012 Apr; 50(3):252-8. PubMed ID: 21859389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Models of C. albicans-Streptococcal Co-infection.
    Sobue T; Diaz P; Xu H; Bertolini M; Dongari-Bagtzoglou A
    Methods Mol Biol; 2016; 1356():137-52. PubMed ID: 26519070
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Sheehan G; Tully L; Kavanagh KA
    Microbiology (Reading); 2020 Apr; 166(4):375-385. PubMed ID: 32068530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and In Vivo Evaluation of a Novel Histatin-5 Bioadhesive Hydrogel Formulation against Oral Candidiasis.
    Kong EF; Tsui C; Boyce H; Ibrahim A; Hoag SW; Karlsson AJ; Meiller TF; Jabra-Rizk MA
    Antimicrob Agents Chemother; 2016 Feb; 60(2):881-9. PubMed ID: 26596951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.
    Tati S; Davidow P; McCall A; Hwang-Wong E; Rojas IG; Cormack B; Edgerton M
    PLoS Pathog; 2016 Mar; 12(3):e1005522. PubMed ID: 27029023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Invasion process of Candida albicans to tongue surface in early stages of experimental murine oral candidiasis.
    Hisajima T; Ishibashi H; Yamada T; Nishiyama Y; Yamaguchi H; Funakoshi K; Abe S
    Med Mycol; 2008 Nov; 46(7):697-704. PubMed ID: 18608936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Candida albicans morphogenesis by tumor necrosis factor-alpha and potential for treatment of oral candidiasis.
    Ohta H; Tanimoto T; Taniai M; Taniguchi M; Ariyasu T; Arai S; Ohta T; Fukuda S
    In Vivo; 2007; 21(1):25-32. PubMed ID: 17354610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Langerin+ DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection.
    Sparber F; Dolowschiak T; Mertens S; Lauener L; Clausen BE; Joller N; Stoitzner P; Tussiwand R; LeibundGut-Landmann S
    PLoS Pathog; 2018 May; 14(5):e1007069. PubMed ID: 29782555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic Adaptations During
    Eichelberger KR; Cassat JE
    Front Immunol; 2021; 12():797550. PubMed ID: 34956233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IL-1alpha, IL-1ra and IL-8 are differentially induced by Candida in experimental oral candidiasis.
    Jayatilake JA; Samaranayake LP; Lu Q; Jin LJ
    Oral Dis; 2007 Jul; 13(4):426-33. PubMed ID: 17577331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective effects of human saliva on experimental murine oral candidiasis.
    Kamagata-Kiyoura Y; Abe S; Yamaguchi H; Nitta T
    J Infect Chemother; 2004 Aug; 10(4):253-5. PubMed ID: 15365870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Persistence of
    Kirchner FR; Littringer K; Altmeier S; Tran VDT; Schönherr F; Lemberg C; Pagni M; Sanglard D; Joller N; LeibundGut-Landmann S
    Front Immunol; 2019; 10():330. PubMed ID: 30873177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.