These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2542229)
1. Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae. Ramos J; Cirillo VP J Bacteriol; 1989 Jun; 171(6):3545-8. PubMed ID: 2542229 [TBL] [Abstract][Full Text] [Related]
2. Catabolite inactivation of the sugar transporters in Saccharomyces cerevisiae is inhibited by the presence of a nitrogen source. Lucero P; Moreno E; Lagunas R FEMS Yeast Res; 2002 Jan; 1(4):307-14. PubMed ID: 12702334 [TBL] [Abstract][Full Text] [Related]
3. cAMP-dependent protein kinase is not involved in catabolite inactivation of the transport of sugars in Saccharomyces cerevisiae. Riballo E; Mazón MJ; Lagunas R Biochim Biophys Acta; 1994 Jun; 1192(1):143-6. PubMed ID: 8204645 [TBL] [Abstract][Full Text] [Related]
4. The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion. Gamo FJ; Moreno E; Lagunas R Yeast; 1995 Nov; 11(14):1393-8. PubMed ID: 8585322 [TBL] [Abstract][Full Text] [Related]
5. Sugar transport in Saccharomyces cerevisiae. Lagunas R FEMS Microbiol Rev; 1993 Apr; 10(3-4):229-42. PubMed ID: 8318258 [TBL] [Abstract][Full Text] [Related]
6. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. Gamo FJ; Lafuente MJ; Gancedo C J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563 [TBL] [Abstract][Full Text] [Related]
7. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Rolland F; De Winde JH; Lemaire K; Boles E; Thevelein JM; Winderickx J Mol Microbiol; 2000 Oct; 38(2):348-58. PubMed ID: 11069660 [TBL] [Abstract][Full Text] [Related]
8. Regulation of maltose transport in Saccharomyces cerevisiae. Brondijk TH; Konings WN; Poolman B Arch Microbiol; 2001 Jul; 176(1-2):96-105. PubMed ID: 11479708 [TBL] [Abstract][Full Text] [Related]
9. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. Horak J; Wolf DH J Bacteriol; 1997 Mar; 179(5):1541-9. PubMed ID: 9045811 [TBL] [Abstract][Full Text] [Related]
10. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Crauwels M; Donaton MCV; Pernambuco MB; Winderickx J; de Winde JH; Thevelein JM Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2627-2637. PubMed ID: 9274016 [TBL] [Abstract][Full Text] [Related]
11. Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. Busturia A; Lagunas R J Gen Microbiol; 1986 Feb; 132(2):379-85. PubMed ID: 3519857 [TBL] [Abstract][Full Text] [Related]
12. In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase. Otaka E; Kumazaki T; Matsumoto K J Bacteriol; 1986 Aug; 167(2):713-5. PubMed ID: 3015887 [TBL] [Abstract][Full Text] [Related]
13. Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. Krampe S; Stamm O; Hollenberg CP; Boles E FEBS Lett; 1998 Dec; 441(3):343-7. PubMed ID: 9891967 [TBL] [Abstract][Full Text] [Related]
14. Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. Walsh MC; Smits HP; Scholte M; van Dam K J Bacteriol; 1994 Feb; 176(4):953-8. PubMed ID: 8106337 [TBL] [Abstract][Full Text] [Related]
15. Stability of neutral trehalase during heat stress in Saccharomyces cerevisiae is dependent on the activity of the catalytic subunits of cAMP-dependent protein kinase, Tpk1 and Tpk2. Zähringer H; Holzer H; Nwaka S Eur J Biochem; 1998 Aug; 255(3):544-51. PubMed ID: 9738892 [TBL] [Abstract][Full Text] [Related]
16. Involvement of endocytosis in catabolite inactivation of the K+ and glucose transport systems in Saccharomyces cerevisiae. Riballo E; Lagunas R FEMS Microbiol Lett; 1994 Aug; 121(1):77-80. PubMed ID: 8082829 [TBL] [Abstract][Full Text] [Related]
17. Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters. Nishizawa K; Shimoda E; Kasahara M J Biol Chem; 1995 Feb; 270(6):2423-6. PubMed ID: 7852299 [TBL] [Abstract][Full Text] [Related]
18. Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. De Bruijne AW; Schuddemat J; Van den Broek PJ; Van Steveninck J Biochim Biophys Acta; 1988 Apr; 939(3):569-76. PubMed ID: 3355832 [TBL] [Abstract][Full Text] [Related]
19. Catabolite inactivation of wild-type and mutant maltose transport proteins in Saccharomyces cerevisiae. Brondijk TH; van der Rest ME; Pluim D; de Vries Y; Stingl K; Poolman B; Konings WN J Biol Chem; 1998 Jun; 273(25):15352-7. PubMed ID: 9624116 [TBL] [Abstract][Full Text] [Related]
20. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. Wendell DL; Bisson LF J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]