These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25422420)

  • 1. Anomalously large isotope effect in the glass transition of water.
    Gainaru C; Agapov AL; Fuentes-Landete V; Amann-Winkel K; Nelson H; Köster KW; Kolesnikov AI; Novikov VN; Richert R; Böhmer R; Loerting T; Sokolov AP
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17402-7. PubMed ID: 25422420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of quantum fluctuations in structural dynamics of liquids of light molecules.
    Agapov A; Novikov VN; Kisliuk A; Richert R; Sokolov AP
    J Chem Phys; 2016 Dec; 145(23):234507. PubMed ID: 28010087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water's second glass transition.
    Amann-Winkel K; Gainaru C; Handle PH; Seidl M; Nelson H; Böhmer R; Loerting T
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17720-5. PubMed ID: 24101518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum effects in the dynamics of deeply supercooled water.
    Agapov AL; Kolesnikov AI; Novikov VN; Richert R; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022312. PubMed ID: 25768510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation time of water's high-density amorphous ice phase.
    Andersson O
    Phys Rev Lett; 2005 Nov; 95(20):205503. PubMed ID: 16384070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition.
    Bachler J; Giebelmann J; Amann-Winkel K; Loerting T
    J Chem Phys; 2022 Aug; 157(6):064502. PubMed ID: 35963736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transitions in pressure collapsed clathrate hydrates.
    Andersson O; Nakazawa Y
    J Phys Chem B; 2015 Mar; 119(9):3846-53. PubMed ID: 25686530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum effects in dynamics of water and other liquids of light molecules.
    Novikov VN; Sokolov AP
    Eur Phys J E Soft Matter; 2017 May; 40(5):57. PubMed ID: 28510231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron Scattering Analysis of Water's Glass Transition and Micropore Collapse in Amorphous Solid Water.
    Hill CR; Mitterdorfer C; Youngs TG; Bowron DT; Fraser HJ; Loerting T
    Phys Rev Lett; 2016 May; 116(21):215501. PubMed ID: 27284664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Decoupling of Molecular-Relaxation Processes from the Vibrational Density of States at Terahertz Frequencies in Supercooled Hydrogen-Bonded Liquids.
    Sibik J; Elliott SR; Zeitler JA
    J Phys Chem Lett; 2014 Jun; 5(11):1968-72. PubMed ID: 26273882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass transition and relaxation processes in supercooled water.
    Cerveny S; Schwartz GA; Bergman R; Swenson J
    Phys Rev Lett; 2004 Dec; 93(24):245702. PubMed ID: 15697826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.
    Shete G; Khomane KS; Bansal AK
    J Pharm Sci; 2014 Jan; 103(1):167-78. PubMed ID: 24186540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientational and translational dynamics in room temperature ionic liquids.
    Rivera A; Brodin A; Pugachev A; Rössler EA
    J Chem Phys; 2007 Mar; 126(11):114503. PubMed ID: 17381216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The length and time scales of water's glass transitions.
    Limmer DT
    J Chem Phys; 2014 Jun; 140(21):214509. PubMed ID: 24908028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals.
    Gupta J; Nunes C; Jonnalagadda S
    Mol Pharm; 2013 Nov; 10(11):4136-45. PubMed ID: 24074140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying hydrogen-bonded structures by physical vapor deposition: 4-methyl-3-heptanol.
    Young-Gonzales AR; Guiseppi-Elie A; Ediger MD; Richert R
    J Chem Phys; 2017 Nov; 147(19):194504. PubMed ID: 29166100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay.
    Elamin K; Björklund J; Nyhlén F; Yttergren M; Mårtensson L; Swenson J
    J Chem Phys; 2014 Jul; 141(3):034505. PubMed ID: 25053324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density amorphous ice: Molecular dynamics simulations of the glass transition at 0.3 GPa.
    Seidl M; Loerting T; Zifferer G
    J Chem Phys; 2009 Sep; 131(11):114502. PubMed ID: 19778124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.