These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 25422442)
1. A general construction for parallelizing Metropolis-Hastings algorithms. Calderhead B Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442 [TBL] [Abstract][Full Text] [Related]
2. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
3. Convergence Rates for the Constrained Sampling via Langevin Monte Carlo. Zhu Y Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628264 [TBL] [Abstract][Full Text] [Related]
4. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms. Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558 [TBL] [Abstract][Full Text] [Related]
5. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data. Liang F; Kim J; Song Q Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469 [TBL] [Abstract][Full Text] [Related]
7. Searching for efficient Markov chain Monte Carlo proposal kernels. Yang Z; Rodríguez CE Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19307-12. PubMed ID: 24218600 [TBL] [Abstract][Full Text] [Related]
8. BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO. Catanach TA; Vo HD; Munsky B Int J Uncertain Quantif; 2020; 10(6):515-542. PubMed ID: 34007522 [TBL] [Abstract][Full Text] [Related]
9. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Altekar G; Dwarkadas S; Huelsenbeck JP; Ronquist F Bioinformatics; 2004 Feb; 20(3):407-15. PubMed ID: 14960467 [TBL] [Abstract][Full Text] [Related]
10. Fitting complex population models by combining particle filters with Markov chain Monte Carlo. Knape J; de Valpine P Ecology; 2012 Feb; 93(2):256-63. PubMed ID: 22624307 [TBL] [Abstract][Full Text] [Related]
11. The Barker proposal: Combining robustness and efficiency in gradient-based MCMC. Livingstone S; Zanella G J R Stat Soc Series B Stat Methodol; 2022 Apr; 84(2):496-523. PubMed ID: 35910401 [TBL] [Abstract][Full Text] [Related]
12. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data. Saraiva EF; Suzuki AK; Milan LA Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265731 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems. Ballnus B; Hug S; Hatz K; Görlitz L; Hasenauer J; Theis FJ BMC Syst Biol; 2017 Jun; 11(1):63. PubMed ID: 28646868 [TBL] [Abstract][Full Text] [Related]
14. Applying diffusion-based Markov chain Monte Carlo. Herbei R; Paul R; Berliner LM PLoS One; 2017; 12(3):e0173453. PubMed ID: 28301529 [TBL] [Abstract][Full Text] [Related]
15. de Finetti Priors using Markov chain Monte Carlo computations. Bacallado S; Diaconis P; Holmes S Stat Comput; 2015 Jul; 25(4):797-808. PubMed ID: 26412947 [TBL] [Abstract][Full Text] [Related]
16. A quasi-Monte Carlo Metropolis algorithm. Owen AB; Tribble SD Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8844-9. PubMed ID: 15956207 [TBL] [Abstract][Full Text] [Related]
18. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. McNaughton B; Milošević MV; Perali A; Pilati S Phys Rev E; 2020 May; 101(5-1):053312. PubMed ID: 32575304 [TBL] [Abstract][Full Text] [Related]
19. An algorithm for Monte Carlo estimation of genotype probabilities on complex pedigrees. Lin S; Thompson E; Wijsman E Ann Hum Genet; 1994 Oct; 58(4):343-57. PubMed ID: 7864590 [TBL] [Abstract][Full Text] [Related]
20. Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems. Kramer A; Calderhead B; Radde N BMC Bioinformatics; 2014 Jul; 15(1):253. PubMed ID: 25066046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]