BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 25422475)

  • 1. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.
    Burschowsky D; van Eerde A; Ökvist M; Kienhöfer A; Kast P; Hilvert D; Krengel U
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17516-21. PubMed ID: 25422475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The near attack conformation approach to the study of the chorismate to prephenate reaction.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12015-20. PubMed ID: 14523243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction.
    Chook YM; Gray JV; Ke H; Lipscomb WN
    J Mol Biol; 1994 Jul; 240(5):476-500. PubMed ID: 8046752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures.
    Sträter N; Schnappauf G; Braus G; Lipscomb WN
    Structure; 1997 Nov; 5(11):1437-52. PubMed ID: 9384560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor.
    Kienhöfer A; Kast P; Hilvert D
    J Am Chem Soc; 2003 Mar; 125(11):3206-7. PubMed ID: 12630863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monofunctional chorismate mutase from Bacillus subtilis: FTIR studies and the mechanism of action of the enzyme.
    Gray JV; Knowles JR
    Biochemistry; 1994 Aug; 33(33):9953-9. PubMed ID: 8061004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the role of active-site residues in chorismate mutase catalysis from molecular-dynamics simulations.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Angew Chem Int Ed Engl; 2003 Apr; 42(13):1508-11. PubMed ID: 12698486
    [No Abstract]   [Full Text] [Related]  

  • 10. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1176-81. PubMed ID: 11818529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C NMR studies of the enzyme-product complex of Bacillus subtilis chorismate mutase.
    Rajagopalan JS; Taylor KM; Jaffe EK
    Biochemistry; 1993 Apr; 32(15):3965-72. PubMed ID: 8471608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preorganization and reorganization as related factors in enzyme catalysis: the chorismate mutase case.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2003 Feb; 9(4):984-91. PubMed ID: 12584715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.
    Choutko A; van Gunsteren WF
    Protein Sci; 2012 Nov; 21(11):1672-81. PubMed ID: 22898919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A; Kienhöfer A; Hilvert D; Pervushin K
    Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization.
    Strajbl M; Shurki A; Kato M; Warshel A
    J Am Chem Soc; 2003 Aug; 125(34):10228-37. PubMed ID: 12926945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase.
    Guimarães CR; Repasky MP; Chandrasekhar J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2003 Jun; 125(23):6892-9. PubMed ID: 12783541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes do what is expected (chalcone isomerase versus chorismate mutase).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Feb; 125(6):1472-3. PubMed ID: 12568595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A definitive mechanism for chorismate mutase.
    Zhang X; Zhang X; Bruice TC
    Biochemistry; 2005 Aug; 44(31):10443-8. PubMed ID: 16060652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.