BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25423038)

  • 1. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.
    Pillar-Little EA; Camm RC; Guzman MI
    Environ Sci Technol; 2014 Dec; 48(24):14352-60. PubMed ID: 25423038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous Oxidation of Catechol.
    Pillar-Little EA; Zhou R; Guzman MI
    J Phys Chem A; 2015 Oct; 119(41):10349-59. PubMed ID: 26403273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of Substituted Catechols at the Air-Water Interface: Production of Carboxylic Acids, Quinones, and Polyphenols.
    Pillar-Little EA; Guzman MI
    Environ Sci Technol; 2017 May; 51(9):4951-4959. PubMed ID: 28394572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of Catechols at the Air-Water Interface by Nitrate Radicals.
    Rana MS; Guzman MI
    Environ Sci Technol; 2022 Nov; 56(22):15437-15448. PubMed ID: 36318667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DRIFTS studies on the role of surface water in stabilizing catechol-iron(III) complexes at the gas/solid interface.
    Tofan-Lazar J; Situm A; Al-Abadleh HA
    J Phys Chem A; 2013 Oct; 117(40):10368-80. PubMed ID: 24044553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of secondary organic aerosol from alpha-pinene ozonolysis: roles of hydroxyl and nitrate radicals.
    Qi L; Nakao S; Cocker DR
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1359-69. PubMed ID: 23362755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of surface adsorbed catechol on tropospheric aerosol surrogates: heterogeneous ozonolysis and its effects on water uptake.
    Woodill LA; O'Neill EM; Hinrichs RZ
    J Phys Chem A; 2013 Jul; 117(27):5620-31. PubMed ID: 23782312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphase Ozonolysis of Aqueous α-Terpineol.
    Leviss DH; Van Ry DA; Hinrichs RZ
    Environ Sci Technol; 2016 Nov; 50(21):11698-11705. PubMed ID: 27680201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of the phenolic SOA formation in the presence of electrolytic inorganic seed.
    Choi J; Jang M
    Sci Total Environ; 2022 Dec; 851(Pt 1):158082. PubMed ID: 35985582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.
    Smith JD; Kinney H; Anastasio C
    Phys Chem Chem Phys; 2015 Apr; 17(15):10227-37. PubMed ID: 25797024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging of α-Pinene Secondary Organic Aerosol by Hydroxyl Radicals in the Aqueous Phase: Kinetics and Products.
    Witkowski B; Al-Sharafi M; Błaziak K; Gierczak T
    Environ Sci Technol; 2023 Apr; 57(15):6040-6051. PubMed ID: 37014140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates.
    Goldstone JV; Pullin MJ; Bertilsson S; Voelker BM
    Environ Sci Technol; 2002 Feb; 36(3):364-72. PubMed ID: 11871550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary organic aerosol formation from cyclohexene ozonolysis: effect of OH scavenger and the role of radical chemistry.
    Keywood MD; Kroll JH; Varutbangkul V; Bahreini R; Flagan RC; Seinfeld JH
    Environ Sci Technol; 2004 Jun; 38(12):3343-50. PubMed ID: 15260334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene.
    Reisen F; Arey J
    Environ Sci Technol; 2002 Oct; 36(20):4302-11. PubMed ID: 12387402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Oxidative Oligomerization of Catechol.
    Guzman MI; Pillar-Little EA; Eugene AJ
    ACS Omega; 2022 Oct; 7(40):36009-36016. PubMed ID: 36249361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Water Interface.
    Rana MS; Guzman MI
    J Phys Chem A; 2020 Oct; 124(42):8822-8833. PubMed ID: 32931271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry.
    Henry KM; Lohaus T; Donahue NM
    Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ozone and radical chemistry on limonene organic aerosol production and thermal characteristics.
    Pathak RK; Salo K; Emanuelsson EU; Cai C; Lutz A; Hallquist AM; Hallquist M
    Environ Sci Technol; 2012 Nov; 46(21):11660-9. PubMed ID: 22985264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory studies on secondary organic aerosol formation from terpenes.
    Iinuma Y; Böge O; Miao Y; Sierau B; Gnauk T; Herrmann H
    Faraday Discuss; 2005; 130():279-94; discussion 363-86, 519-24. PubMed ID: 16161789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.
    Bernard F; Ciuraru R; Boréave A; George C
    Environ Sci Technol; 2016 Aug; 50(16):8678-86. PubMed ID: 27434860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.