BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25423362)

  • 1. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes.
    Godwin LA; Brooks JC; Hoepfner LD; Wanders D; Judd RL; Easley CJ
    Analyst; 2015 Feb; 140(4):1019-25. PubMed ID: 25423362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.
    Brooks JC; Judd RL; Easley CJ
    Methods Mol Biol; 2017; 1566():185-201. PubMed ID: 28244052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue.
    Li X; Easley CJ
    Anal Bioanal Chem; 2018 Jan; 410(3):791-800. PubMed ID: 29214530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human adipocyte differentiation and characterization in a perfusion-based cell culture device.
    Liu Y; Kongsuphol P; Gourikutty SBN; Ramadan Q
    Biomed Microdevices; 2017 Sep; 19(3):18. PubMed ID: 28357654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes.
    Liu Y; Kongsuphol P; Chiam SY; Zhang QX; Gourikutty SBN; Saha S; Biswas SK; Ramadan Q
    Lab Chip; 2019 Jan; 19(2):241-253. PubMed ID: 30566152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments.
    Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y
    Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air-liquid interface.
    Bose N; Das T; Chakraborty D; Maiti TK; Chakraborty S
    Lab Chip; 2012 Jan; 12(1):69-73. PubMed ID: 22076598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device.
    Wang Y; Lee D; Zhang L; Jeon H; Mendoza-Elias JE; Harvat TA; Hassan SZ; Zhou A; Eddington DT; Oberholzer J
    Biomed Microdevices; 2012 Apr; 14(2):419-26. PubMed ID: 22252566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pumps for microfluidic cell culture.
    Byun CK; Abi-Samra K; Cho YK; Takayama S
    Electrophoresis; 2014 Feb; 35(2-3):245-57. PubMed ID: 23893649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic CARS cytometry.
    Wang HW; Bao N; Le TL; Lu C; Cheng JX
    Opt Express; 2008 Apr; 16(8):5782-9. PubMed ID: 18542688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling.
    Li X; Brooks JC; Hu J; Ford KI; Easley CJ
    Lab Chip; 2017 Jan; 17(2):341-349. PubMed ID: 27990542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic perifusion and imaging device for multi-parametric islet function assessment.
    Adewola AF; Lee D; Harvat T; Mohammed J; Eddington DT; Oberholzer J; Wang Y
    Biomed Microdevices; 2010 Jun; 12(3):409-17. PubMed ID: 20300858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.