These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25423662)

  • 1. Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters.
    Zhang Y; Pan G; Jia K; Lu M; Wang Y; Wu Z
    IEEE Trans Cybern; 2015 Sep; 45(9):1864-75. PubMed ID: 25423662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of sparse representation and dictionary matching for identification of humans in uncontrolled environment.
    Fernandes SL; Bala GJ
    Comput Biol Med; 2016 Sep; 76():215-37. PubMed ID: 27498411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curve aligning approach for gait authentication based on a wearable accelerometer.
    Sun H; Yuao T
    Physiol Meas; 2012 Jun; 33(6):1111-20. PubMed ID: 22621972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secure and privacy enhanced gait authentication on smart phone.
    Hoang T; Choi D
    ScientificWorldJournal; 2014; 2014():438254. PubMed ID: 24955403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly.
    Micó-Amigo ME; Kingma I; Ainsworth E; Walgaard S; Niessen M; van Lummel RC; van Dieën JH
    J Neuroeng Rehabil; 2016 Apr; 13():38. PubMed ID: 27093956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinematic human-walking model for the normal-gait-speed estimation using tri-axial acceleration signals at waist location.
    Hu JS; Sun KC; Cheng CY
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2271-9. PubMed ID: 23529073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finger vein verification system based on sparse representation.
    Xin Y; Liu Z; Zhang H; Zhang H
    Appl Opt; 2012 Sep; 51(25):6252-8. PubMed ID: 22945174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerometry-based gait analysis and its application to Parkinson's disease assessment--part 1: detection of stride event.
    Yoneyama M; Kurihara Y; Watanabe K; Mitoma H
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):613-22. PubMed ID: 23661322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations.
    Khandelwal S; Wickström N
    Gait Posture; 2018 Jan; 59():278-285. PubMed ID: 28780277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adapted step length estimators for patients with Parkinson's disease using a lateral belt worn accelerometer.
    Sayeed T; Samà A; Català A; Rodríguez-Molinero A; Cabestany J
    Technol Health Care; 2015; 23(2):179-94. PubMed ID: 25468759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson's disease hand tremor.
    LeMoyne R; Mastroianni T
    Methods Mol Biol; 2015; 1256():335-58. PubMed ID: 25626550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context Impacts in Accelerometer-Based Walk Detection and Step Counting.
    Ao B; Wang Y; Liu H; Li D; Song L; Li J
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30352984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint sparse representation for robust multimodal biometrics recognition.
    Shekhar S; Patel VM; Nasrabadi NM; Chellappa R
    IEEE Trans Pattern Anal Mach Intell; 2014 Jan; 36(1):113-26. PubMed ID: 24231870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Post-Processing Proposal for Improving Biometric Gait Recognition Using Wearable Devices.
    Salvador-Ortega I; Vivaracho-Pascual C; Simon-Hurtado A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of velocity on variability in gait kinematics: implications for recognition in forensic science.
    Yang SX; Larsen PK; Alkjaer T; Lynnerup N; Simonsen EB
    J Forensic Sci; 2014 Sep; 59(5):1242-7. PubMed ID: 24684582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of accelerometer-based gait recognition to adjuvant clinical gait analysis.
    Tu B; Xu H; Han X
    Technol Health Care; 2019; 27(6):603-611. PubMed ID: 31033466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminative and Compact Coding for Robust Face Recognition.
    Lai ZR; Dai DQ; Ren CX; Huang KK
    IEEE Trans Cybern; 2015 Sep; 45(9):1900-12. PubMed ID: 25343776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condition-Aware Comparison Scheme for Gait Recognition.
    Wu H; Tian J; Fu Y; Li B; Li X
    IEEE Trans Image Process; 2021; 30():2734-2744. PubMed ID: 33259300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial face recognition: alignment-free approach.
    Liao S; Jain AK; Li SZ
    IEEE Trans Pattern Anal Mach Intell; 2013 May; 35(5):1193-205. PubMed ID: 23520259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.