These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25424422)

  • 1. Photon-assisted tunnelling with nonclassical light.
    Souquet JR; Woolley MJ; Gabelli J; Simon P; Clerk AA
    Nat Commun; 2014 Nov; 5():5562. PubMed ID: 25424422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
    Fan L; Zou CL; Cheng R; Guo X; Han X; Gong Z; Wang S; Tang HX
    Sci Adv; 2018 Aug; 4(8):eaar4994. PubMed ID: 30128351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedforward-enhanced Fock state conversion with linear optics.
    Švarc V; Hloušek J; Nováková M; Fiurášek J; Ježek M
    Opt Express; 2020 Apr; 28(8):11634-11644. PubMed ID: 32403670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave photon Fock state generation by stimulated Raman adiabatic passage.
    Premaratne SP; Wellstood FC; Palmer BS
    Nat Commun; 2017 Jan; 8():14148. PubMed ID: 28128205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive.
    Kono S; Masuyama Y; Ishikawa T; Tabuchi Y; Yamazaki R; Usami K; Koshino K; Nakamura Y
    Phys Rev Lett; 2017 Jul; 119(2):023602. PubMed ID: 28753365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converting Quasiclassical States into Arbitrary Fock State Superpositions in a Superconducting Circuit.
    Wang W; Hu L; Xu Y; Liu K; Ma Y; Zheng SB; Vijay R; Song YP; Duan LM; Sun L
    Phys Rev Lett; 2017 Jun; 118(22):223604. PubMed ID: 28621980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena.
    Cottet A; Dartiailh MC; Desjardins MM; Cubaynes T; Contamin LC; Delbecq M; Viennot JJ; Bruhat LE; Douçot B; Kontos T
    J Phys Condens Matter; 2017 Nov; 29(43):433002. PubMed ID: 28925381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot.
    Gullans MJ; Stehlik J; Liu YY; Eichler C; Petta JR; Taylor JM
    Phys Rev Lett; 2016 Jul; 117(5):056801. PubMed ID: 27517784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear optics quantum computing with circuit QED.
    Adhikari P; Hafezi M; Taylor JM
    Phys Rev Lett; 2013 Feb; 110(6):060503. PubMed ID: 23432228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet-Andreev states.
    Haxell DZ; Coraiola M; Sabonis D; Hinderling M; Ten Kate SC; Cheah E; Krizek F; Schott R; Wegscheider W; Belzig W; Cuevas JC; Nichele F
    Nat Commun; 2023 Oct; 14(1):6798. PubMed ID: 37884490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creating large Fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum.
    Rivera N; Sloan J; Salamin Y; Joannopoulos JD; Soljačić M
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2219208120. PubMed ID: 36827265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of quantum state collapse and revival due to the single-photon Kerr effect.
    Kirchmair G; Vlastakis B; Leghtas Z; Nigg SE; Paik H; Ginossar E; Mirrahimi M; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2013 Mar; 495(7440):205-9. PubMed ID: 23486059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the decay of Fock states in a superconducting quantum circuit.
    Wang H; Hofheinz M; Ansmann M; Bialczak RC; Lucero E; Neeley M; O'Connell AD; Sank D; Wenner J; Cleland AN; Martinis JM
    Phys Rev Lett; 2008 Dec; 101(24):240401. PubMed ID: 19113602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Correlations beyond Entanglement and Discord.
    Köhnke S; Agudelo E; Schünemann M; Schlettwein O; Vogel W; Sperling J; Hage B
    Phys Rev Lett; 2021 Apr; 126(17):170404. PubMed ID: 33988445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of optical 'Schrödinger cats' from photon number states.
    Ourjoumtsev A; Jeong H; Tualle-Brouri R; Grangier P
    Nature; 2007 Aug; 448(7155):784-6. PubMed ID: 17700695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action.
    Qiu L; Sahu R; Hease W; Arnold G; Fink JM
    Nat Commun; 2023 Jun; 14(1):3784. PubMed ID: 37355691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulated Emission of Signal Photons from Dark Matter Waves.
    Agrawal A; Dixit AV; Roy T; Chakram S; He K; Naik RK; Schuster DI; Chou A
    Phys Rev Lett; 2024 Apr; 132(14):140801. PubMed ID: 38640371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.